1932

Abstract

Psychophysical and neurophysiological studies of responses to visual motion have converged on a consistent set of general principles that characterize visual processing of motion information. Both types of approaches have shown that the direction and speed of target motion are among the most important encoded stimulus properties, revealing many parallels between psychophysical and physiological responses to motion. Motivated by these parallels, this review focuses largely on more direct links between the key feature of the neuronal response to motion, direction selectivity, and its utilization in memory-guided perceptual decisions. These links were established during neuronal recordings in monkeys performing direction discriminations, but also by examining perceptual effects of widespread elimination of cortical direction selectivity produced by motion deprivation during development. Other approaches, such as microstimulation and lesions, have documented the importance of direction-selective activity in the areas that are active during memory-guided direction comparisons, area MT and the prefrontal cortex, revealing their likely interactions during behavioral tasks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081816
2020-09-15
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081816.html?itemId=/content/journals/10.1146/annurev-vision-121219-081816&mimeType=html&fmt=ahah

Literature Cited

  1. Adelson EH, Movshon JA. 1982. Phenomenal coherence of moving visual patterns. Nature 300:523–25
    [Google Scholar]
  2. Ajina S, Rees G, Kennard C, Bridge H 2015. Abnormal contrast responses in the extrastriate cortex of blindsight patients. J. Neurosci. 35:8201–13
    [Google Scholar]
  3. Allman J, Miezin F, McGuinness E 1985. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8:407–30
    [Google Scholar]
  4. Andersen RA. 1997. Neural mechanisms of visual motion perception in primates. Neuron 18:865–72
    [Google Scholar]
  5. Anton-Erxleben K, Stephan VM, Treue S 2009. Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb. Cortex 19:2466–78
    [Google Scholar]
  6. Baker C, Hess RF, Zihl J 1991. Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. J. Neurosci. 11:454–61
    [Google Scholar]
  7. Baker CL, Braddick OJ. 1985. Eccentricity-dependent scaling of the limits for short range motion perception. Vis. Res. 25:803–12
    [Google Scholar]
  8. Barbas H. 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276:313–42
    [Google Scholar]
  9. Barbey AK, Koenigs M, Grafman J 2013. Dorsolateral prefrontal contributions to human working memory. Cortex 49:1195–205
    [Google Scholar]
  10. Bisley JW, Pasternak T. 2000. The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cereb. Cortex 10:1053–65
    [Google Scholar]
  11. Bisley JW, Zaksas D, Droll JA, Pasternak T 2004. Activity of neurons in cortical area MT during a memory for motion task. J. Neurophysiol. 91:286–300
    [Google Scholar]
  12. Bisley JW, Zaksas D, Pasternak T 2001. Microstimulation of cortical area MT affects performance on a visual working memory task. J. Neurophysiol. 85:187–96
    [Google Scholar]
  13. Bisti S, Carmignoto G, Galli L, Maffei L 1985. Spatial-frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus. J. Physiol. 359:259–68
    [Google Scholar]
  14. Born RT, Bradley DC. 2005. Structure and function of visual area MT. Annu. Rev. Neurosci. 28:157–89
    [Google Scholar]
  15. Born RT, Groh JM, Zhao R, Lukasewycz SJ 2000. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–34
    [Google Scholar]
  16. Boussaoud D, Ungerleider LG, Desimone R 1990. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 296:462–95
    [Google Scholar]
  17. Braddick O. 1993. Segmentation versus integration in visual motion processing. Trends Neurosci 16:263–68
    [Google Scholar]
  18. Braddick OJ, O'Brien JMD, Wattam-Bell J, Atkinson J, Hartley T, Turner R 2001. Brain areas sensitive to coherent visual motion. Perception 30:61–72
    [Google Scholar]
  19. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13:87–100
    [Google Scholar]
  20. Britten KH, Shadlen MN, Newsome WT, Movshon JA 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745–65
    [Google Scholar]
  21. Burge J, Geisler WS. 2015. Optimal speed estimation in natural image movies predicts human performance. Nat. Commun. 6:7900
    [Google Scholar]
  22. Camisa J, Blake R, Levinson E 1977. Visual movement perception in the cat is directionally selective. Exp. Brain Res. 29:429–32
    [Google Scholar]
  23. Celebrini S, Newsome WT. 1994. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14:4109–24
    [Google Scholar]
  24. Celebrini S, Newsome WT. 1995. Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J. Neurophysiol. 73:437–48
    [Google Scholar]
  25. Curtis CE, D'Esposito M. 2003. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7:415–23
    [Google Scholar]
  26. Cynader M, Chernenko G. 1976. Abolition of direction selectivity in the visual cortex of the cat. Science 193:504–5
    [Google Scholar]
  27. Desimone R, Ungerleider LG. 1986. Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248:164–89
    [Google Scholar]
  28. Ditterich J, Mazurek ME, Shadlen MN 2003. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat. Neurosci. 6:891–98
    [Google Scholar]
  29. Dreher B, Wang C, Turlejski KJ, Djavadian RL, Burke W 1996. Areas PMLS and 21A of cat visual cortex: two functionally distinct areas. Cereb. Cortex 6:585–99
    [Google Scholar]
  30. Duffy CJ, Wurtz RH. 1991. Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J. Neurophysiol. 65:1346–59
    [Google Scholar]
  31. Dunn-Weiss E, Nummela SU, Lempel AA, Law JM, Ledley J et al. 2019. Visual motion and form integration in the behaving ferret. eNeuro 6: ENEURO.0228-19.2019
    [Google Scholar]
  32. Egger SW, Britten KH. 2013. Linking sensory neurons to visually guided behavior: relating MST activity to steering in a virtual environment. Vis. Neurosci. 30:315–30
    [Google Scholar]
  33. Eskandar EN, Assad JA. 2002. Distinct nature of directional signals among parietal cortical areas during visual guidance. J. Neurophysiol. 88:1777–90
    [Google Scholar]
  34. Fanini A, Assad JA. 2009. Direction selectivity of neurons in the macaque lateral intraparietal area. J. Neurophysiol. 101:289–305
    [Google Scholar]
  35. Ferrera VP, Rudolph KK, Maunsell JH 1994. Responses of neurons in the parietal and temporal visual pathways during a motion task. J. Neurosci. 14:6171–86
    [Google Scholar]
  36. Freedman DJ, Assad JA. 2006. Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–88
    [Google Scholar]
  37. Freedman DJ, Assad JA. 2016. Neuronal mechanisms of visual categorization: an abstract view on decision making. Annu. Rev. Neurosci. 39:129–47
    [Google Scholar]
  38. Freedman DJ, Ibos G. 2018. An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron 97:1219–34
    [Google Scholar]
  39. Gegenfurtner KR, Kiper DC, Levitt JB 1997. Functional properties of neurons in macaque area V3. J. Neurophysiol. 77:1906–23
    [Google Scholar]
  40. Glasser DM, Tsui JMG, Pack CC, Tadin D 2011. Perceptual and neural consequences of rapid motion adaptation. PNAS 108:E1080–88
    [Google Scholar]
  41. Gu Y, DeAngelis GC, Angelaki DE 2007. A functional link between area MSTd and heading perception based on vestibular signals. Nat. Neurosci. 10:1038–47
    [Google Scholar]
  42. Gu Y, DeAngelis GC, Angelaki DE 2012. Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. J. Neurosci. 32:2299–313
    [Google Scholar]
  43. Hawken MJ, Parker AJ, Lund JS 1988. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J. Neurosci. 8:3541–48
    [Google Scholar]
  44. Hedges JH, Gartshteyn Y, Kohn A, Rust NC, Shadlen MN et al. 2011. Dissociation of neuronal and psychophysical responses to local and global motion. Curr. Biol. 21:2023–28
    [Google Scholar]
  45. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  46. Hubel DH, Wiesel TN. 1965. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–89
    [Google Scholar]
  47. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  48. Hubel DH, Wiesel TN. 1969. Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J. Physiol. 202:251–60
    [Google Scholar]
  49. Huk AC, Heeger DJ. 2002. Pattern-motion responses in human visual cortex. Nat. Neurosci. 5:72–75
    [Google Scholar]
  50. Huk AC, Katz LN, Yates JL 2017. The role of the lateral intraparietal area in (the study of) decision making. Annu. Rev. Neurosci. 40:349–72
    [Google Scholar]
  51. Huk AC, Shadlen MN. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25:10420–36
    [Google Scholar]
  52. Hussar CR, Pasternak T. 2009. Flexibility of sensory representations in prefrontal cortex depends on cell type. Neuron 64:730–43
    [Google Scholar]
  53. Hussar CR, Pasternak T. 2012. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons. J. Neurosci. 32:2747–61
    [Google Scholar]
  54. Hussar CR, Pasternak T. 2013. Common rules guide comparisons of speed and direction of motion in the dorsolateral prefrontal cortex. J. Neurosci. 33:972–86
    [Google Scholar]
  55. Katzner S, Busse L, Treue S 2009. Attention to the color of a moving stimulus modulates motion-signal processing in macaque area MT: evidence for a unified attentional system. Front. Syst. Neurosci. 3:12
    [Google Scholar]
  56. Kennedy H, Orban GA. 1983. Response properties of visual cortical neurons in cats reared in stroboscopic illumination. J. Neurophysiol. 49:686–704
    [Google Scholar]
  57. Khawaja FA, Liu LD, Pack CC 2013. Responses of MST neurons to plaid stimuli. J. Neurophysiol. 110:63–74
    [Google Scholar]
  58. Kwon O-S, Tadin D, Knill DC 2015. Unifying account of visual motion and position perception. PNAS 112:8142–47
    [Google Scholar]
  59. Levinson E, Sekuler R. 1975a. The independence of channels in human vision selective for direction of movement. J. Physiol. 250:347–66
    [Google Scholar]
  60. Levinson E, Sekuler R. 1975b. Inhibition and disinhibition of direction-specific mechanisms in human vision. Nature 254:692–94
    [Google Scholar]
  61. Li B, Chen Y, Li B-W, Wang L-H, Diao Y-C 2001. Pattern and component motion selectivity in cortical area PMLS of the cat. Eur. J. Neurosci. 14:690–700
    [Google Scholar]
  62. Ling S, Liu T, Carrasco M 2009. How spatial and feature-based attention affect the gain and tuning of population responses. Vis. Res. 49:1194–204
    [Google Scholar]
  63. Liu J, Newsome WT. 2005. Correlation between speed perception and neural activity in the middle temporal visual area. J. Neurosci. 25:711–22
    [Google Scholar]
  64. Liu J, Newsome WT. 2006. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J. Neurosci. 26:7779–90
    [Google Scholar]
  65. Liu LD, Haefner RM, Pack CC 2016. A neural basis for the spatial suppression of visual motion perception. eLife 5:e16167
    [Google Scholar]
  66. Liu LD, Pack CC. 2017. The contribution of area MT to visual motion perception depends on training. Neuron 95:436–46.e3
    [Google Scholar]
  67. Lui LL, Pasternak T. 2011. Representation of comparison signals in cortical area MT during a delayed direction discrimination task. J. Neurophysiol. 106:1260–73
    [Google Scholar]
  68. Martinez-Trujillo J, Treue S. 2002. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35:365–70
    [Google Scholar]
  69. Masse NY, Hodnefield JM, Freedman DJ 2017. Mnemonic encoding and cortical organization in parietal and prefrontal cortices. J. Neurosci. 37:6098–112
    [Google Scholar]
  70. Masse NY, Yang GR, Song HF, Wang X-J, Freedman DJ 2019. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat. Neurosci. 22:1159–67
    [Google Scholar]
  71. Maunsell JH, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci 29:317–22
    [Google Scholar]
  72. Maunsell JH, Van Essen DC 1983. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49:1127–47
    [Google Scholar]
  73. McKee SP, Silverman GH, Nakayama K 1986. Precise velocity discrimination despite random variations in temporal frequency and contrast. Vis. Res. 26:609–19
    [Google Scholar]
  74. Mendoza-Halliday D, Torres S, Martinez-Trujillo JC 2014. Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat. Neurosci. 17:1255–62
    [Google Scholar]
  75. Mikami A, Newsome WT, Wurtz RH 1986. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J. Neurophysiol. 55:1328–39
    [Google Scholar]
  76. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–83
    [Google Scholar]
  77. Morrone MC, Di Stefano M, Burr DC 1986. Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. J. Neurophysiol. 56:969–86
    [Google Scholar]
  78. Movshon JA, Adelson EH, Gizzi MS, Newsome WT 1985. The analysis of moving visual patterns. Pattern Recognition Mechanisms C Chagas, R Gattas, CG Gross 117–51 Vatican City: Pontif. Acad. Sci.
    [Google Scholar]
  79. Murasugi CM, Salzman CD, Newsome WT 1993. Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J. Neurosci. 13:1719–29
    [Google Scholar]
  80. Nakayama K. 1985. Biological image motion processing: a review. Vis. Res. 25:625–60
    [Google Scholar]
  81. Nakayama K, Loomis JM. 1974. Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception 3:63–80
    [Google Scholar]
  82. Nawrot M, Shannon E, Rizzo M 1996. The relative efficacy of cues for two-dimensional shape perception. Vis. Res. 36:1141–52
    [Google Scholar]
  83. Newsome WT, Britten KH, Movshon JA 1989. Neuronal correlates of a perceptual decision. Nature 341:52–54
    [Google Scholar]
  84. Newsome WT, Pare EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:2201–11
    [Google Scholar]
  85. Newsome WT, Wurtz RH, Dursteler MR, Mikami A 1985. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5:825–40
    [Google Scholar]
  86. Nichols MJ, Newsome WT. 2002. Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22:9530–40
    [Google Scholar]
  87. Ninomiya T, Sawamura H, Inoue K-I, Takada M 2012. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. J. Neurosci. 32:6851–58
    [Google Scholar]
  88. Nishimoto S, Gallant JL. 2011. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies. J. Neurosci. 31:14551–64
    [Google Scholar]
  89. Nishimoto S, Vu An T, Naselaris T, Benjamini Y, Yu B, Gallant JL 2011. Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21:1641–46
    [Google Scholar]
  90. Orban GA, Kennedy H, Maes H 1981. Response of movement of neurons in areas 17 and 18 of the cat: direction selectivity. J. Neurophysiol. 45:1059–73
    [Google Scholar]
  91. Ouellette BG, Minville K, Faubert J, Casanova C 2004. Simple and complex visual motion response properties in the anterior medial bank of the lateral suprasylvian cortex. Neuroscience 123:231–45
    [Google Scholar]
  92. Pack CC, Berezovskii VK, Born RT 2001. Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905–8
    [Google Scholar]
  93. Pack CC, Born RT. 2001. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409:1040–42
    [Google Scholar]
  94. Pack CC, Hunter JN, Born RT 2005. Contrast dependence of suppressive influences in cortical area MT of alert macaque. J. Neurophysiol. 93:1809–15
    [Google Scholar]
  95. Park WJ, Tadin D. 2018. Motion perception. The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience: Sensation, Perception & Attention J Serences 415–88 Hoboken, NJ: Wiley. , 4th ed..
    [Google Scholar]
  96. Pasternak T. 1986. The role of cortical directional selectivity in detection of motion and flicker. Vis. Res. 26:1187–94
    [Google Scholar]
  97. Pasternak T. 1987. Discrimination of differences in speed and flicker rate depends on directionally selective mechanisms. Vis. Res. 27:1881–90
    [Google Scholar]
  98. Pasternak T. 1990. Vision following loss of cortical direction selectivity. In Comparative Perception. , Basic Mechanisms Vol 1 M Berkley, W Stebbins 407–28 New York: Wiley
    [Google Scholar]
  99. Pasternak T, Albano J, Harvitt D 1990. The role of directionally selective neurons in the perception of global motion. J. Neurosci. 10:3079–86
    [Google Scholar]
  100. Pasternak T, Bisley JW, Calkins D 2003. Visual information processing in the primate brain. Biological Psychology M Gallagher, RJ Nelson 139–85 Hoboken, NJ: Wiley
    [Google Scholar]
  101. Pasternak T, Horn KM, Maunsell JHR 1989. Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis. Neurosci. 3:365–75
    [Google Scholar]
  102. Pasternak T, Leinen LJ. 1986. Pattern and motion vision in cats with selective loss of cortical directional selectivity. J. Neurosci. 6:938–45
    [Google Scholar]
  103. Pasternak T, Lui LL, Spinelli PM 2015. Unilateral prefrontal lesions impair memory-guided comparisons of contralateral visual motion. J. Neurosci. 35:7095–105
    [Google Scholar]
  104. Pasternak T, Maunsell JH. 1992. Spatiotemporal sensitivity following lesions of area 18 in the cat. J. Neurosci. 12:4521–29
    [Google Scholar]
  105. Pasternak T, Merigan WH. 1994. Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb. Cortex 4:247–59
    [Google Scholar]
  106. Pasternak T, Movshon JA, Merigan WH 1981. Creation of direction selectivity in adult strobe-reared cats. Nature 292:834–36
    [Google Scholar]
  107. Pasternak T, Schumer RA, Gizzi MS, Movshon JA 1985. Abolition of visual cortical direction selectivity affects visual behavior in cats. Exp. Brain Res. 61:214–17
    [Google Scholar]
  108. Pasternak T, Tompkins J, Olson CR 1995. The role of striate cortex in visual function of the cat. J. Neurosci. 15:1940–50
    [Google Scholar]
  109. Pasternak T, Zaksas D. 2003. Stimulus specificity and temporal dynamics of working memory for visual motion. J. Neurophysiol. 90:2752–57
    [Google Scholar]
  110. Patzwahl DR, Treue S. 2009. Combining spatial and feature-based attention within the receptive field of MT neurons. Vis. Res. 49:1188–93
    [Google Scholar]
  111. Pawar AS, Gepshtein S, Savel'ev S, Albright TD 2019. Mechanisms of spatiotemporal selectivity in cortical area MT. Neuron 101:514–27.e2
    [Google Scholar]
  112. Petrides M, Pandya DN. 2006. Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J. Comp. Neurol. 498:227–51
    [Google Scholar]
  113. Plant GT, Nakayama K. 1993. The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans. Brain 116:1337–53
    [Google Scholar]
  114. Price NSC, Born RT. 2010. Timescales of sensory- and decision-related activity in the middle temporal and medial superior temporal areas. J. Neurosci. 30:14036–45
    [Google Scholar]
  115. Qian N, Andersen RA, Adelson EH 1994. Transparent motion perception as detection of unbalanced motion signals. I. Psychophysics. J. Neurosci. 14:7357–66
    [Google Scholar]
  116. Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87
    [Google Scholar]
  117. Recanzone GH, Wurtz RH, Schwarz U 1997. Responses of MT and MST neurons to one and two moving objects in the receptive field. J. Neurophysiol. 78:2904–15
    [Google Scholar]
  118. Rizzo M, Nawrot M, Zihl J 1995. Motion and shape perception in cerebral akinetopsia. Brain 118:1105–27
    [Google Scholar]
  119. Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22:9475–89
    [Google Scholar]
  120. Rudolph K, Pasternak T. 1999. Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb. Cortex 9:90–100
    [Google Scholar]
  121. Rudolph KK, Ferrera VP, Pasternak T 1994. A reduction in the number of directionally selective neurons extends the spatial limit for global motion perception. Vis. Res. 34:3241–51
    [Google Scholar]
  122. Rudolph KK, Pasternak T. 1996. Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb. Cortex 6:814–22
    [Google Scholar]
  123. Rust NC, Mante V, Simoncelli EP, Movshon JA 2006. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9:1421–31
    [Google Scholar]
  124. Salzman CD, Murasugi CM, Britten KH, Newsome WT 1992. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12:2331–55
    [Google Scholar]
  125. Schall JD, Morel A, King DJ, Bullier J 1995. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15:4464–87
    [Google Scholar]
  126. Schwartz ML, Goldman-Rakic PS. 1984. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J. Comp. Neurol. 226:403–20
    [Google Scholar]
  127. Sclar G, Maunsell JH, Lennie P 1990. Coding of image contrast in central visual pathways of the macaque monkey. Vis. Res. 30:1–10
    [Google Scholar]
  128. Sekuler R, Levinson E. 1977. The perception of moving targets. Sci. Am. 236:60–73
    [Google Scholar]
  129. Sekuler RW, Ganz L. 1963. Aftereffect of seen motion with a stabilized retinal image. Science 139:419
    [Google Scholar]
  130. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:1916–36
    [Google Scholar]
  131. Simoncelli EP, Heeger DJ. 1998. A model of neuronal responses in visual area MT. Vis. Res. 38:743–61
    [Google Scholar]
  132. Spear PD. 1991. Functions of extrastriate visual cortex in non-primate species. The Neural Basis of Visual Function (Vision and Visual Dysfunction) A Leventhal 339–70 New York: Macmillan
    [Google Scholar]
  133. Spear PD, Baumann TP. 1975. Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. J. Neurophysiol. 38:1403–20
    [Google Scholar]
  134. Spear PD, Tong L, McCall MA, Pasternak T 1985. Developmentally induced loss of direction-selective neurons in the cat's lateral suprasylvian visual cortex. Dev. Brain Res. 20:281–85
    [Google Scholar]
  135. Sunaert S, Van Hecke P, Marchal G, Orban GA 1999. Motion-responsive regions of the human brain. Exp. Brain Res. 127:355–70
    [Google Scholar]
  136. Swaminathan SK, Freedman DJ. 2012. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15:315–20
    [Google Scholar]
  137. Szczepanski SM, Knight RT. 2014. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83:1002–18
    [Google Scholar]
  138. Tadin D. 2015. Suppressive mechanisms in visual motion processing: from perception to intelligence. Vis. Res. 115:58–70
    [Google Scholar]
  139. Tadin D, Lappin JS, Gilroy LA, Blake R 2003. Perceptual consequences of centre-surround antagonism in visual motion processing. Nature 424:312–15
    [Google Scholar]
  140. Tadin D, Park WJ, Dieter KC, Melnick MD, Lappin JS, Blake R 2019. Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nat. Commun. 10:2732
    [Google Scholar]
  141. Tadin D, Silvanto J, Pascual-Leone A, Battelli L 2011. Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J. Neurosci. 31:1279–83
    [Google Scholar]
  142. Takahashi K, Gu Y, May PJ, Newlands SD, DeAngelis GC, Angelaki DE 2007. Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity. J. Neurosci. 27:9742–56
    [Google Scholar]
  143. Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E 1986. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci. 6:134–44
    [Google Scholar]
  144. Tanaka K, Saito H. 1989. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62:626–41
    [Google Scholar]
  145. Teller DY. 1984. Linking propositions. Vis. Res. 24:1233–46
    [Google Scholar]
  146. Thiele A, Hoffmann KP. 1996. Neuronal activity in MST and STPp, but not MT changes systematically with stimulus-independent decisions. Neuroreport 7:971–76
    [Google Scholar]
  147. Tolhurst DJ, Sharpe CR, Hart G 1973. The analysis of the drift rate of moving sinusoidal gratings. Vis. Res. 13:2545–55
    [Google Scholar]
  148. Tolias AS, Keliris GA, Smirnakis SM, Logothetis NK 2005. Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli. Nat. Neurosci. 8:591–93
    [Google Scholar]
  149. Toyama K, Mizobe K, Akase E, Kaihara T 1994. Neuronal responsiveness in areas 19 and 21a, and the posteromedial lateral suprasylvian cortex of the cat. Exp. Brain Res. 99:289–301
    [Google Scholar]
  150. Treue S, Martinez Trujillo JC 1999. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–79
    [Google Scholar]
  151. Treue S, Maunsell JH. 1996. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–41
    [Google Scholar]
  152. Treue S, Maunsell JH. 1999. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J. Neurosci. 19:7591–602
    [Google Scholar]
  153. Wallach H. 1935. Über visuell wahrgenommene Bewegungsrichtung. Psychol. Forsch. 20:325–80
    [Google Scholar]
  154. Wang HX, Movshon JA. 2015. Properties of pattern and component direction selective cells in area MT of the macaque. J. Neurophysiol. 115:2705–20
    [Google Scholar]
  155. Watson AB, Thompson PG, Murphy BJ, Nachmias J 1980. Summation and discrimination of gratings moving in opposite directions. Vis. Res. 20:341–48
    [Google Scholar]
  156. Williams DW, Sekuler R. 1984. Coherent global motion percepts from stochastic local motions. Vis. Res. 24:55–62
    [Google Scholar]
  157. Williams ZM, Elfar JC, Eskandar EN, Toth LJ, Assad JA 2003. Parietal activity and the perceived direction of ambiguous apparent motion. Nat. Neurosci. 6:616–23
    [Google Scholar]
  158. Wilson HR. 1985. A model for direction selectivity in threshold motion perception. Biol. Cybern. 51:213–22
    [Google Scholar]
  159. Wilson HR, Gelb DJ. 1984. Modified line-element theory for spatial-frequency and width discrimination. J. Opt. Soc. Am. A 1:124–31
    [Google Scholar]
  160. Wimmer K, Spinelli P, Pasternak T 2016. Prefrontal neurons represent motion signals from across the visual field but for memory-guided comparisons depend on neurons providing these signals. J. Neurosci. 36:9351–64
    [Google Scholar]
  161. Wood CC, Spear PD, Braun JJ 1973. Direction-specific deficits in horizontal nystagmus following removal of visual cortex in the cat. Brain Res 60:231–37
    [Google Scholar]
  162. Yamasaki DS, Wurtz RH. 1991. Recovery of function after lesions in the superior temporal sulcus in the monkey. J. Neurophysiol. 66:651–73
    [Google Scholar]
  163. Zaksas D, Bisley JW, Pasternak T 2001. Motion information is spatially localized in a visual working-memory task. J. Neurophysiol. 86:912–21
    [Google Scholar]
  164. Zaksas D, Pasternak T. 2006. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J. Neurosci. 26:11726–42
    [Google Scholar]
  165. Zohary E, Shadlen MN, Newsome WT 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–43
    [Google Scholar]
  166. Zokaei N, Manohar S, Husain M, Feredoes E 2013. Causal evidence for a privileged working memory state in early visual cortex. J. Neurosci. 34:158–62
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081816
Loading
/content/journals/10.1146/annurev-vision-121219-081816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error