1932

Abstract

A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina—originally viewed as homogenous—in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081831
2020-09-15
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081831.html?itemId=/content/journals/10.1146/annurev-vision-121219-081831&mimeType=html&fmt=ahah

Literature Cited

  1. Ahnelt PK, Kolb H. 2000. The mammalian photoreceptor mosaic-adaptive design. Prog. Retin. Eye Res. 19:6711–77
    [Google Scholar]
  2. Andrade-de-Costa BL, Pessoa VF, Bousfield JD, Clarke RJ 1989. Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.). Braz. J. Med. Biol. Res. 22:223–36
    [Google Scholar]
  3. Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD et al. 2000. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:3513–23
    [Google Scholar]
  4. Arrese CA, Oddy AY, Runham PB, Hart NS, Shand J et al. 2005. Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Proc. Biol. Sci. 272:1565791–96
    [Google Scholar]
  5. Arrese CA, Rodger J, Beazley LD, Shand J 2003. Topographies of retinal cone photoreceptors in two Australian marsupials. Vis. Neurosci. 20:3307–11
    [Google Scholar]
  6. Azzopardi P, Cowey A. 1993. Preferential representation of the fovea in the primary visual cortex. Nature 361:6414719–21
    [Google Scholar]
  7. Badea TC, Nathans J. 2004. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J. Comp. Neurol. 480:4331–51
    [Google Scholar]
  8. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:7586345–50
    [Google Scholar]
  9. Baden T, Osorio D. 2019. The retinal basis of vertebrate color vision. Annu. Rev. Vis. Sci. 5:177–200
    [Google Scholar]
  10. Baden T, Schubert T, Chang L, Wei T, Zaichuk M et al. 2013. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80:51206–17
    [Google Scholar]
  11. Barlow HB. 1961. Possible principles underlying the transformations of sensory messages. Sensory Communication WA Rosenblith 216–34 Cambridge, MA: MIT Press
    [Google Scholar]
  12. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL 2014. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:3310–15
    [Google Scholar]
  13. Bowmaker JK, Dartnall HJ. 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298:501–11
    [Google Scholar]
  14. Breuninger T, Puller C, Haverkamp S, Euler T 2011. Chromatic bipolar cell pathways in the mouse retina. J. Neurosci. 31:176504–17
    [Google Scholar]
  15. Bringmann A, Syrbe S, Görner K, Kacza J, Francke M et al. 2018. The primate fovea: structure, function and development. Prog. Retin. Eye Res. 66:49–84
    [Google Scholar]
  16. Bumsted K, Hendrickson A. 1999. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. J. Comp. Neurol. 403:4502–16
    [Google Scholar]
  17. Calderone JB, Jacobs GH. 1995. Regional variations in the relative sensitivity to UV light in the mouse retina. Vis. Neurosci. 12:3463–68
    [Google Scholar]
  18. Calderone JB, Reese BE, Jacobs GH 2003. Topography of photoreceptors and retinal ganglion cells in the spotted hyena (Crocuta crocuta). Brain Behav. Evol. 62:4182–92
    [Google Scholar]
  19. Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P 1994. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371:649270–72
    [Google Scholar]
  20. Chalfin L, Dayan M, Levy DR, Austad SN, Miller RA et al. 2014. Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nat. Commun. 5:4569
    [Google Scholar]
  21. Chang L, Breuninger T, Euler T 2013. Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:3559–71
    [Google Scholar]
  22. Chievitz JH. 1889. Untersuchungen Über die Area Centralis Retinae Berlin: Arch. Anat. Physiol.
  23. Coimbra JP, Hart NS, Collin SP, Manger PR 2013. Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). J. Comp. Neurol. 521:92042–57
    [Google Scholar]
  24. Collin SP. 2008. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Exp. Optom. 91:185–95
    [Google Scholar]
  25. Coombs J, van der List D, Wang GY, Chalupa LM 2006. Morphological properties of mouse retinal ganglion cells. Neuroscience 140:1123–36
    [Google Scholar]
  26. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:15–25
    [Google Scholar]
  27. Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB et al. 1991. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312:4610–24
    [Google Scholar]
  28. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE 1990. Human photoreceptor topography. J. Comp. Neurol. 292:4497–523
    [Google Scholar]
  29. Dacey DM, Crook JD, Packer OS 2014. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis. Neurosci. 31:2139–51
    [Google Scholar]
  30. Dacey DM, Packer OS. 2003. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13:4421–27
    [Google Scholar]
  31. Dacey DM, Petersen MR. 1992. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:209666–70
    [Google Scholar]
  32. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:162150–54
    [Google Scholar]
  33. de Monasterio FM, McCrane EP, Newlander JK, Schein SJ 1985. Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest. Ophthalmol. Vis. Sci. 26:3289–302
    [Google Scholar]
  34. Demb JB, Singer JH. 2012. Intrinsic properties and functional circuitry of the AII amacrine cell. Vis. Neurosci. 29:151–60
    [Google Scholar]
  35. Denman DJ, Luviano JA, Ollerenshaw DR, Cross S, Williams D et al. 2018. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7:e31209
    [Google Scholar]
  36. Denman DJ, Siegle JH, Koch C, Reid RC, Blanche TJ 2017. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37:51102–16
    [Google Scholar]
  37. Dkhissi-Benyahya O, Szel A, Degrip WJ, Cooper HM 2001. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus). J. Comp. Neurol. 438:4490–504
    [Google Scholar]
  38. Dräger UC, Olsen JF. 1981. Ganglion cell distribution in the retina of the mouse. Invest. Ophthalmol. Vis. Sci. 20:3285–93
    [Google Scholar]
  39. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:149–60
    [Google Scholar]
  40. Ekesten B, Gouras P. 2001. Identifying UV-cone responses in the murine superior colliculus. Vis. Res. 41:222819–25
    [Google Scholar]
  41. Ekesten B, Gouras P. 2005. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels. Vis. Neurosci. 22:6893–903
    [Google Scholar]
  42. El-Danaf RN, Huberman AD. 2019. Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. J. Comp. Neurol. 527:1259–69
    [Google Scholar]
  43. Famiglietti EV, Sharpe SJ. 1995. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis. Neurosci. 12:61151–75
    [Google Scholar]
  44. Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K et al. 2013. Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78:2325–38
    [Google Scholar]
  45. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA et al. 2010. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:7316673–77
    [Google Scholar]
  46. Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T 2017. Inhibition decorrelates visual feature representations in the inner retina. Nature 542:7642439–44
    [Google Scholar]
  47. Garrett ME, Nauhaus I, Marshel JH, Callaway EM 2014. Topography and areal organization of mouse visual cortex. J. Neurosci. 34:3712587–600
    [Google Scholar]
  48. Glösmann M, Steiner M, Peichl L, Ahnelt PK 2008. Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J. Vis. 8:423
    [Google Scholar]
  49. Goodchild AK, Ghosh KK, Martin PR 1996. Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J. Comp. Neurol 366:155–75
    [Google Scholar]
  50. Govardovskii VI, Röhlich P, Szél A, Khokhlova TV 1992. Cones in the retina of the Mongolian gerbil, Meriones unguiculatus: an immunocytochemical and electrophysiological study. Vis. Res. 32:119–27
    [Google Scholar]
  51. Grimes WN, Baudin J, Azevedo AW, Rieke F 2018a. Range, routing and kinetics of rod signaling in primate retina. eLife 7:e38281
    [Google Scholar]
  52. Grimes WN, Songco-Aguas A, Rieke F 2018b. Parallel processing of rod and cone signals: retinal function and human perception. Annu. Rev. Vis. Sci 4:12341
    [Google Scholar]
  53. Hauzman E, Bonci DMO, Ventura DF 2018. Retinal topographic maps: a glimpse into the animals’ visual world. Sensory Nervous System T Heinbockel, ch. 5 London: IntechOpen
    [Google Scholar]
  54. Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ et al. 2005. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25:225438–45
    [Google Scholar]
  55. Hecht S, Verrijp CD. 1933. Intermittent stimulation by light. III. The relation between intensity and critical fusion frequency for different retinal locations. J. Gen. Physiol. 17:2251–68
    [Google Scholar]
  56. Hemmi JM, Grünert U. 1999. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Vis. Neurosci. 16:2291–302
    [Google Scholar]
  57. Hendrickson A. 2005. Organization of the adult primate fovea. Macular Degeneration PL Penfold, JM Provis 1–23 Berlin: Springer
    [Google Scholar]
  58. Hirsch J, Curcio CA. 1989. The spatial resolution capacity of human foveal retina. Vis. Res. 29:91095–101
    [Google Scholar]
  59. Hoy JL, Yavorska I, Wehr M, Niell CM 2016. Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26:223046–52
    [Google Scholar]
  60. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works. Trends Neurosci 34:9464–73
    [Google Scholar]
  61. Hughes A. 1975. A quantitative analysis of the cat retinal ganglion cell topography. J. Comp. Neurol. 163:1107–28
    [Google Scholar]
  62. Hughes A. 1977. The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. The Visual System in Vertebrates F Crescitelli 613–756 Berlin: Springer
    [Google Scholar]
  63. Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW 2013. Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr. Biol. 23:171696–701
    [Google Scholar]
  64. Isaacson JS, Scanziani M. 2011. How inhibition shapes cortical activity. Neuron 72:2231–43
    [Google Scholar]
  65. Jacobs GH. 1993. The distribution and nature of colour vision among the mammals. Biol. Rev. Camb. Philos. Soc. 68:3413–71
    [Google Scholar]
  66. Jacobs GH, Neitz J. 1989. Cone monochromacy and a reversed Purkinje shift in the gerbil. Experientia 45:4317–403
    [Google Scholar]
  67. Jacobs GH, Neitz J, Deegan JF 1991. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:6345655–56
    [Google Scholar]
  68. Jacobs GH, Williams GA, Fenwick JA 2004. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vis. Res. 44:141615–22
    [Google Scholar]
  69. Jeon CJ, Strettoi E, Masland RH 1998. The major cell populations of the mouse retina. J. Neurosci. 18:218936–46
    [Google Scholar]
  70. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:7598236–39
    [Google Scholar]
  71. Juliusson B, Bergström A, Röhlich P, Ehinger B, van Veen T, Szél A 1994. Complementary cone fields of the rabbit retina. Invest. Ophthalmol. Vis. Sci. 35:3811–18
    [Google Scholar]
  72. Kim I-J, Zhang Y, Yamagata M, Meister M, Sanes JR 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:7186478–82
    [Google Scholar]
  73. Kolb H, Dekorver L. 1991. Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J. Comp. Neurol. 303:4617–36
    [Google Scholar]
  74. Kolb H, Marshak D. 2003. The midget pathways of the primate retina. Doc. Ophthalmol. 106:167–81
    [Google Scholar]
  75. Kong J-H, Fish DR, Rockhill RL, Masland RH 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489:3293–310
    [Google Scholar]
  76. Kryger Z, Galli-Resta L, Jacobs GH, Reese BE 1998. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci. 15:4685–91
    [Google Scholar]
  77. Lennie P, Haake PW, Williams DR 1991. The design of chromatically opponent receptive fields. Computational Models of Visual Processing MS Landy, JA Movshon 71–82 Cambridge, MA: MIT Press
    [Google Scholar]
  78. Levick WR. 1967. Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina. J. Physiol. 188:3285–307
    [Google Scholar]
  79. Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB 2008. Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J. Neurosci. 28:164136–50
    [Google Scholar]
  80. Martin PR, Grünert U. 1999. Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J. Comp. Neurol. 406:11–14
    [Google Scholar]
  81. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:2266–80
    [Google Scholar]
  82. Mauss AS, Vlasits A, Borst A, Feller M 2017. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 40:211–30
    [Google Scholar]
  83. Moore BA, Tyrrell LP, Kamilar JM, Collin SP, Dominy NJ et al. 2017. Structure and function of regional specializations in the vertebrate retina. Evolution of Nervous Systems J Kaas 351–72 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  84. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:163733–53
    [Google Scholar]
  85. Moroney MK, Pettigrew JD. 1987. Some observations on the visual optics of kingfishers (Aves, Caraciformes, Alcedinidae). J. Comp. Physiol. A 160:137–49
    [Google Scholar]
  86. Müller H. 1861. Über das ausgedehnte Vorkommen einer dem gelben Fleck der Retina entsprechenden Stelle bei Thieren. Naturwiss. Z. 2:139–40
    [Google Scholar]
  87. Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:101308–16
    [Google Scholar]
  88. Murphy GJ, Rieke F. 2008. Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells. Nat. Neurosci. 11:3318–26
    [Google Scholar]
  89. Neitz J, Jacobs GH. 1986. Reexamination of spectral mechanisms in the rat (Rattus norvegicus). J. Comp. Psychol. 100:121–29
    [Google Scholar]
  90. Nikonov SS, Kholodenko R, Lem J, Pugh EN 2006. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 127:4359–74
    [Google Scholar]
  91. Osterhout JA, Josten N, Yamada J, Pan F, Wu S et al. 2011. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71:4632–39
    [Google Scholar]
  92. Oyster CW, Takahashi ES, Hurst DC 1981. Density, soma size, and regional distribution of rabbit retinal ganglion cells. J. Neurosci. 1:121331–46
    [Google Scholar]
  93. Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle. Anat. Rec. A 287:11001–12
    [Google Scholar]
  94. Peichl L, Chavez AE, Ocampo A, Mena W, Bozinovic F, Palacios AG 2005. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). J. Comp. Neurol. 486:3197–208
    [Google Scholar]
  95. Peichl LEO, Künzle H, Vogel P 2000. Photoreceptor types and distributions in the retinae of insectivores. Vis. Neurosci. 17:6937–48
    [Google Scholar]
  96. Peng Y-R, Shekhar K, Yan W, Herrmann D, Sappington A et al. 2019. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176:51222–37.e22
    [Google Scholar]
  97. Perry VH, Cowey A. 1985. The ganglion cell and cone distributions in the monkey's retina: implications for central magnification factors. Vis. Res. 25:121795–810
    [Google Scholar]
  98. Polyak SL. 1941. The Retina Chicago: Univ. Chicago Press
  99. Polyak SL. 1957. The Vertebrate Visual System Chicago: Univ. Chicago Press
  100. Rhim I, Coello-Reyes G, Ko H-K, Nauhaus I 2017. Maps of cone opsin input to mouse V1 and higher visual areas. J. Neurophysiol. 117:41674–82
    [Google Scholar]
  101. Rivlin-Etzion M, Grimes WN, Rieke F 2018. Flexible neural hardware supports dynamic computations in retina. Trends Neurosci 41:4224–37
    [Google Scholar]
  102. Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL et al. 2011. Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31:248760–69
    [Google Scholar]
  103. Rodieck RW. 1991. The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 6:295–111
    [Google Scholar]
  104. Röhlich P, van Veen T, Szél A 1994. Two different visual pigments in one retinal cone cell. Neuron 13:51159–66
    [Google Scholar]
  105. Roorda A, Williams DR. 1999. The arrangement of the three cone classes in the living human eye. Nature 397:6719520–22
    [Google Scholar]
  106. Rossi EA, Roorda A. 2010. The relationship between visual resolution and cone spacing in the human fovea. Nat. Neurosci. 13:2156–57
    [Google Scholar]
  107. Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR 2016. Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Rep 15:91930–44
    [Google Scholar]
  108. Rovamo J, Raninen A. 1988. Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit-Harper and Ferry-Porter laws. Vis. Res. 28:7785–90
    [Google Scholar]
  109. Sabbah S, Gemmer JA, Bhatia-Lin A, Manoff G, Castro G et al. 2017. A retinal code for motion along the gravitational and body axes. Nature 546:7659492–97
    [Google Scholar]
  110. Schiviz AN, Ruf T, Kuebber-Heiss A, Schubert C, Ahnelt PK 2008. Retinal cone topography of artiodactyl mammals: influence of body height and habitat. J. Comp. Neurol. 507:31336–50
    [Google Scholar]
  111. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  112. Seiple W, Holopigian K. 1996. Outer-retina locus of increased flicker sensitivity of the peripheral retina. J. Opt. Soc. Am. A 13:3658–66
    [Google Scholar]
  113. Sharpe LT, Stockman A. 1999. Rod pathways: the importance of seeing nothing. Trends Neurosci 22:11497–504
    [Google Scholar]
  114. Shinozaki A, Hosaka Y, Imagawa T, Uehara M 2010. Topography of ganglion cells and photoreceptors in the sheep retina. J. Comp. Neurol. 518:122305–15
    [Google Scholar]
  115. Singleton GR, Krebs CJ. 2007. The secret world of wild mice. The Mouse in Biomedical Research 1 JG Fox, MT Davisson, FW Quimby, SW Barthold, CE Newcomer, AL Smith 25–51 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  116. Sinha R, Hoon M, Baudin J, Okawa H, Wong ROL, Rieke F 2017. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168:3413–26.e12
    [Google Scholar]
  117. Solomon SG, Martin PR, White AJR, Rüttiger L, Lee BB 2002. Modulation sensitivity of ganglion cells in peripheral retina of macaque. Vis. Res. 42:272893–98
    [Google Scholar]
  118. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM et al. 2018. The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97:1150–63.e4
    [Google Scholar]
  119. Stone J, Halasz P. 1989. Topography of the retina in the elephant Loxodonta africana. Brain Behav. Evol 34:284–95
    [Google Scholar]
  120. Sun W, Li N, He S 2002. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451:2115–26
    [Google Scholar]
  121. Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D et al. 2019. Neural circuits in the mouse retina support color vision in the upper visual field. bioRxiv 745539. https://doi.org/10.1101/745539
    [Crossref]
  122. Szél A, Csorba G, Caffé AR, Szél G, Röhlich P, van Veen T 1994. Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus. Cell Tissue Res 276:1143–50
    [Google Scholar]
  123. Szél A, Lukáts A, Fekete T, Szepessy Z, Röhlich P 2000. Photoreceptor distribution in the retinas of subprimate mammals. J. Opt. Soc. Am. A 17:3568–79
    [Google Scholar]
  124. Szél A, Röhlich P. 1992. Two cone types of rat retina detected by anti-visual pigment antibodies. Exp. Eye Res. 55:147–52
    [Google Scholar]
  125. Szél A, Röhlich P, Caffé AR, Juliusson B, Aguirre G, Van Veen T 1992. Unique topographic separation of two spectral classes of cones in the mouse retina. J. Comp. Neurol. 325:3327–42
    [Google Scholar]
  126. Szél A, Röhlich P, Caffé AR, van Veen T 1996. Distribution of cone photoreceptors in the mammalian retina. Microsc. Res. Tech. 35:6445–62
    [Google Scholar]
  127. Tan Z, Sun W, Chen T-W, Kim D, Ji N 2015. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5:12597
    [Google Scholar]
  128. Temple S, Hart NS, Marshall NJ, Collin SP 2010. A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proc. Biol. Sci. 277:16942607–15
    [Google Scholar]
  129. Temple SE. 2011. Why different regions of the retina have different spectral sensitivities: a review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis. Neurosci. 28:4281–93
    [Google Scholar]
  130. Tovée MJ. 1995. Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends Ecol. Evol. 10:11455–60
    [Google Scholar]
  131. Tyler CW. 1985. Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions. J. Opt. Soc. Am. A 2:3393–98
    [Google Scholar]
  132. Viitala J, Korplmäki E, Palokangas P, Koivula M 1995. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature 373:6513425–27
    [Google Scholar]
  133. Vlasits AL, Bos R, Morrie RD, Fortuny C, Flannery JG et al. 2014. Visual stimulation switches the polarity of excitatory input to starburst amacrine cells. Neuron 83:51172–84
    [Google Scholar]
  134. Vlasits AL, Euler T, Franke K 2019. Function first: classifying cell types and circuits of the retina. Curr. Opin. Neurobiol. 56:8–15
    [Google Scholar]
  135. Völgyi B, Chheda S, Bloomfield SA 2009. Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J. Comp. Neurol. 512:5664–87
    [Google Scholar]
  136. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JND 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:745265–69
    [Google Scholar]
  137. Walls GL. 1942. The Vertebrate Eye and Its Adaptive Radiation Bloomfield Hills, MI: Cranbrook Inst. Sci.
  138. Wang Y, Macke JP, Merbs SL, Zack DJ, Klaunberg B et al. 1992. A locus control region adjacent to the human red and green visual pigment genes. Neuron 9:3429–40
    [Google Scholar]
  139. Wang YV, Weick M, Demb JB 2011. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J. Neurosci. 31:217670–81
    [Google Scholar]
  140. Warwick RA, Kaushansky N, Sarid N, Golan A, Rivlin-Etzion M 2018. Inhomogeneous encoding of the visual field in the mouse retina. Curr. Biol. 28:5655–65.e3
    [Google Scholar]
  141. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:10747–57
    [Google Scholar]
  142. Wässle H, Grünert U, Röhrenbeck J, Boycott BB 1989. Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341:6243643–46
    [Google Scholar]
  143. Wässle H, Peichl L, Boycott BB 1981. Dendritic territories of cat retinal ganglion cells. Nature 292:5821344–45
    [Google Scholar]
  144. Watanabe M, Rodieck RW. 1989. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 289:3434–54
    [Google Scholar]
  145. Waugh SJ, Hess RF. 1994. Suprathreshold temporal-frequency discrimination in the fovea and the periphery. J. Opt. Soc. Am. A 11:41199–212
    [Google Scholar]
  146. Wei W. 2018. Neural mechanisms of motion processing in the mammalian retina. Annu. Rev. Vis. Sci. 4:165–92
    [Google Scholar]
  147. Whitaker JO Jr 1966. Food of Mus musculus, Peromyscus maniculatus bairdi and Peromyscus leucopus in Vigo County, Indiana. J. Mammal. 47:3473–86
    [Google Scholar]
  148. Williams DR, MacLeod DIA, Hayhoe MM 1981. Foveal tritanopia. Vis. Res. 21:1341–56
    [Google Scholar]
  149. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:202011–15
    [Google Scholar]
  150. Yu W-Q, El-Danaf RN, Okawa H, Pacholec JM, Matti U et al. 2018. Synaptic convergence patterns onto retinal ganglion cells are preserved despite topographic variation in pre- and postsynaptic territories. Cell Rep 25:82017–26.e3
    [Google Scholar]
  151. Zhang Y, Kim I-J, Sanes JR, Meister M 2012. The most numerous ganglion cell type of the mouse retina is a selective feature detector. PNAS 109:36E2391–98
    [Google Scholar]
  152. Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson D-E et al. 2018. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28:132018–32.e5
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081831
Loading
/content/journals/10.1146/annurev-vision-121219-081831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error