- Home
- A-Z Publications
- Annual Review of Plant Biology
- Previous Issues
- Volume 69, 2018
Annual Review of Plant Biology - Volume 69, 2018
Volume 69, 2018
-
-
Meiotic Recombination: Mixing It Up in Plants
Vol. 69 (2018), pp. 577–609More LessMeiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
-
-
-
Population Genomics of Herbicide Resistance: Adaptation via Evolutionary Rescue
Vol. 69 (2018), pp. 611–635More LessThe evolution of herbicide resistance in weed populations is a highly replicated example of adaptation surmounting the race against extinction, but the factors determining its rate and nature remain poorly understood. Here, we explore theory and empirical evidence for the importance of population genetic parameters—including effective population size, dominance, mutational target size, and gene flow—in influencing the probability and mode of herbicide resistance adaptation and its variation across species. We compiled data on the number of resistance mutations across populations for 79 herbicide-resistant species. Our findings are consistent with theoretical predictions that self-fertilization reduces resistance adaptation from standing variation within populations, but increases independent adaptation across populations. Furthermore, we provide evidence for a ploidy–mating system interaction that may reflect trade-offs in polyploids between increased effective population size and greater masking of beneficial mutations. We highlight the power of population genomic approaches to provide insights into the evolutionary dynamics of herbicide resistance with important implications for understanding the limits of adaptation.
-
-
-
Strategies for Enhanced Crop Resistance to Insect Pests
Vol. 69 (2018), pp. 637–660More LessInsect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
-
-
-
Preadaptation and Naturalization of Nonnative Species: Darwin's Two Fundamental Insights into Species Invasion
Vol. 69 (2018), pp. 661–684More LessPredicting which nonnative species become invasive is critical for their successful management, and Charles Darwin provided predictions based on species’ relatedness. However, Darwin provided two opposing predictions about the relatedness of introduced nonnatives to indigenous species. First, environmental fit is the dominant factor determining invader success; thus, we should expect that invasive species are closely related to local native residents. Alternatively, if competition is important, we should expect successful invaders are distantly related to the native residents. These opposing expectations are referred to as Darwin's naturalization conundrum. The results of studies that examine nonnative species relatedness to natives are largely inconsistent. This inconsistency arises from the fact that studies occur at different spatial and temporal scales, and at different stages of invasion, and so implicitly examine different mechanisms. Further, while species have evolved ecological differences, the mode and tempo of evolution can affect species’ differences, complicating the predictions from simple hypotheses. We outline unanswered questions and provide guidelines for collecting the data required to test competing hypotheses.
-
-
-
Macroevolutionary Patterns of Flowering Plant Speciation and Extinction
Vol. 69 (2018), pp. 685–706More LessSpecies diversity is remarkably unevenly distributed among flowering plant lineages. Despite a growing toolbox of research methods, the reasons underlying this patchy pattern have continued to perplex plant biologists for the past two decades. In this review, we examine the present understanding of transitions in flowering plant evolution that have been proposed to influence speciation and extinction. In particular, ploidy changes, transitions between tropical and nontropical biomes, and shifts in floral form have received attention and have offered some surprises in terms of which factors influence speciation and extinction rates. Mating systems and dispersal characteristics once predominated as determining factors, yet recent evidence suggests that these changes are not as influential as previously thought or are important only when paired with range shifts. Although range extent is an important correlate of speciation, it also influences extinction and brings an applied focus to diversification research. Recent studies that find that past diversification can predict present-day extinction risk open an exciting avenue for future research to help guide conservation prioritization.
-
-
-
When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities
Vol. 69 (2018), pp. 707–731More LessHybrids between flowering plant species often exhibit reduced fitness, including sterility and inviability. Such hybrid incompatibilities create barriers to genetic exchange that can promote reproductive isolation between diverging populations and, ultimately, speciation. Additionally, hybrid breakdown opens a window into hidden molecular and evolutionary processes occurring within species. Here, we review recent work on the mechanisms and origins of hybrid incompatibility in flowering plants, including both diverse genic interactions and chromosomal incompatibilities. Conflict and coevolution among and within plant genomes contributes to the evolution of some well-characterized genic incompatibilities, but duplication and drift also play important roles. Inversions, while contributing to speciation by suppressing recombination, rarely cause underdominant sterility. Translocations cause severe F1 sterility by disrupting meiosis in heterozygotes, making their fixation in outcrossing sister species a paradox. Evolutionary genomic analyses of both genic and chromosomal incompatibilities, in the context of population genetic theory, can explicitly test alternative scenarios for their origins.
-
-
-
The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach
Vol. 69 (2018), pp. 733–759More LessDrought tolerance involves mechanisms operating at different spatial and temporal scales, from rapid stomatal closure to maintenance of crop yield. We review how short-term mechanisms are controlled for stabilizing shoot water potential and how long-term processes have been constrained by evolution or breeding to fit into acclimation strategies for specific drought scenarios. These short- or long-term feedback processes participate in trade-offs between carbon accumulation and the risk of deleterious soil water depletion. Corresponding traits and alleles may therefore have positive or negative effects on crop yield depending on drought scenarios. We propose an approach that analyzes the genetic architecture of traits in phenotyping platforms and of yield in tens of field experiments. A combination of modeling and genomic prediction is then used to estimate the comparative interests of combinations of alleles depending on drought scenarios. Hence, drought tolerance is understood probabilistically by estimating the benefit and risk of each combination of alleles.
-
-
-
Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change
Vol. 69 (2018), pp. 761–787More LessHuman carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO2) that have been unprecedented for the past 50–100+ million years according to fossil plant-based CO2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO2, contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species’ climate envelope in response to global change.
-
-
-
Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security
Vol. 69 (2018), pp. 789–815More LessThe eighteenth-century Malthusian prediction of population growth outstripping food production has not yet come to bear. Unprecedented agricultural land expansions since 1700, and technological innovations that began in the 1930s, have enabled more calorie production per capita than was ever available before in history. This remarkable success, however, has come at a great cost. Agriculture is a major cause of global environmental degradation. Malnutrition persists among large sections of the population, and a new epidemic of obesity is on the rise. We review both the successes and failures of the global food system, addressing ongoing debates on pathways to environmental health and food security. To deal with these challenges, a new coordinated research program blending modern breeding with agro-ecological methods is needed. We call on plant biologists to lead this effort and help steer humanity toward a safe operating space for agriculture.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)