- Home
- A-Z Publications
- Annual Review of Ecology, Evolution, and Systematics
- Previous Issues
- Volume 52, 2021
Annual Review of Ecology, Evolution, and Systematics - Volume 52, 2021
Volume 52, 2021
-
-
Causes, Consequences, and Conservation of Ungulate Migration
Vol. 52 (2021), pp. 453–478More LessOur understanding of ungulate migration is advancing rapidly due to innovations in modern animal tracking. Herein, we review and synthesize nearly seven decades of work on migration and other long-distance movements of wild ungulates. Although it has long been appreciated that ungulates migrate to enhance access to forage, recent contributions demonstrate that their movements are fine tuned to dynamic landscapes where forage, snow, and drought change seasonally. Researchers are beginning to understand how ungulates navigate migrations, with the emerging view that animals blend gradient tracking with spatial memory, some of which is socially learned. Although migration often promotes abundant populations—with broad effects on ecosystems—many migrations around the world have been lost or are currently threatened by habitat fragmentation, climate change, and barriers to movement. Fortunately, new efforts that use empirical tracking data to map migrations in detail are facilitating effective conservation measures to maintain ungulate migration.
-
-
-
Animal Migration: An Overview of One of Nature's Great Spectacles
Vol. 52 (2021), pp. 479–497More LessThe twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.
-
-
-
The Alignment of Natural and Sexual Selection
Vol. 52 (2021), pp. 499–517More LessSexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging.
-
-
-
Evolution in Cities
Vol. 52 (2021), pp. 519–540More LessAlthough research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.
-
-
-
Sensory and Cognitive Ecology of Bats
Vol. 52 (2021), pp. 541–562More LessWe see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.
-
-
-
Evolution of Thermal Sensitivity in Changing and Variable Climates
Vol. 52 (2021), pp. 563–586More LessEvolutionary adaptation to temperature and climate depends on both the extent to which organisms experience spatial and temporal environmental variation (exposure) and how responsive they are to the environmental variation (sensitivity). Theoretical models and experiments suggesting substantial potential for thermal adaptation have largely omitted realistic environmental variation. Environmental variation can drive fluctuations in selection that slow adaptive evolution. We review how carefully filtering environmental conditions based on how organisms experience their environment and further considering organismal sensitivity can improve predictions of thermal adaptation. We contrast taxa differing in exposure and sensitivity. Plasticity can increase the rate of evolutionary adaptation in taxa exposed to pronounced environmental variation. However, forms of plasticity that severely limit exposure, such as behavioral thermoregulation and phenological shifts, can hinder thermal adaptation. Despite examples of rapid thermal adaptation, experimental studies often reveal evolutionary constraints. Further investigating these constraints and issues of timescale and thermal history are needed to predict evolutionary adaptation and, consequently, population persistence in changing and variable environments.
-
-
-
Causes and Consequences of Apparent Timescaling Across All Estimated Evolutionary Rates
Vol. 52 (2021), pp. 587–609More LessEvolutionary rates play a central role in connecting micro- and macroevolution. All evolutionary rate estimates, including rates of molecular evolution, trait evolution, and lineage diversification, share a similar scaling pattern with time: The highest rates are those measured over the shortest time interval. This creates a disconnect between micro- and macroevolution, although the pattern is the opposite of what some might expect: Patterns of change over short timescales predict that evolution has tremendous potential to create variation and that potential is barely tapped by macroevolution. In this review, we discuss this shared scaling pattern across evolutionary rates. We break down possible explanations for scaling into two categories, estimation error and model misspecification, and discuss how both apply to each type of rate. We also discuss the consequences of this ubiquitous pattern, which can lead to unexpected results when comparing ratesover different timescales. Finally, after addressing purely statistical concerns, we explore a few possibilities for a shared unifying explanation across the three types of rates that results from a failure to fully understand and account for how biological processes scale over time.
-
-
-
What Have We Learned from the First 500 Avian Genomes?
Vol. 52 (2021), pp. 611–639More LessThe increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
-
-
-
Cascading Impacts of Seed Disperser Loss on Plant Communities and Ecosystems
Vol. 52 (2021), pp. 641–666More LessSeed dispersal is key to the persistence and spread of plant populations. Because the majority of plant species rely on animals to disperse their seeds, global change drivers that directly affect animals can cause cascading impacts on plant communities. In this review, we synthesize studies assessing how disperser loss alters plant populations, community patterns, multitrophic interactions, and ecosystem functioning. We argue that the magnitude of risk to plants from disperser loss is shaped by the combination of a plant species’ inherent dependence on seed dispersal and the severity of the hazards faced by their dispersers. Because the factors determining a plant species’ risk of decline due to disperser loss can be related to traits of the plants and dispersers, our framework enables a trait-based understanding of change in plant community composition and ecosystem functioning. We discuss how interactions among plants, among dispersers, and across other trophic levels also mediate plant community responses, and we identify areas for future research to understand and mitigate the consequences of disperser loss on plants globally.
-
Previous Volumes
-
Volume 55 (2024)
-
Volume 54 (2023)
-
Volume 53 (2022)
-
Volume 52 (2021)
-
Volume 51 (2020)
-
Volume 50 (2019)
-
Volume 49 (2018)
-
Volume 48 (2017)
-
Volume 47 (2016)
-
Volume 46 (2015)
-
Volume 45 (2014)
-
Volume 44 (2013)
-
Volume 43 (2012)
-
Volume 42 (2011)
-
Volume 41 (2010)
-
Volume 40 (2009)
-
Volume 39 (2008)
-
Volume 38 (2007)
-
Volume 37 (2006)
-
Volume 36 (2005)
-
Volume 35 (2004)
-
Volume 34 (2003)
-
Volume 33 (2002)
-
Volume 32 (2001)
-
Volume 31 (2000)
-
Volume 30 (1999)
-
Volume 29 (1998)
-
Volume 28 (1997)
-
Volume 27 (1996)
-
Volume 26 (1995)
-
Volume 25 (1994)
-
Volume 24 (1993)
-
Volume 23 (1992)
-
Volume 22 (1991)
-
Volume 21 (1990)
-
Volume 20 (1989)
-
Volume 19 (1988)
-
Volume 18 (1987)
-
Volume 17 (1986)
-
Volume 16 (1985)
-
Volume 15 (1984)
-
Volume 14 (1983)
-
Volume 13 (1982)
-
Volume 12 (1981)
-
Volume 11 (1980)
-
Volume 10 (1979)
-
Volume 9 (1978)
-
Volume 8 (1977)
-
Volume 7 (1976)
-
Volume 6 (1975)
-
Volume 5 (1974)
-
Volume 4 (1973)
-
Volume 3 (1972)
-
Volume 2 (1971)
-
Volume 1 (1970)
-
Volume 0 (1932)