- Home
- A-Z Publications
- Annual Review of Physical Chemistry
- Previous Issues
- Volume 67, 2016
Annual Review of Physical Chemistry - Volume 67, 2016
Volume 67, 2016
-
-
Measuring the Hydrodynamic Size of Nanoparticles Using Fluctuation Correlation Spectroscopy
Vol. 67 (2016), pp. 489–514More LessFluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles.
-
-
-
Atomic and Molecular Collisions at Liquid Surfaces
Vol. 67 (2016), pp. 515–540More LessThe gas–liquid interface remains one of the least explored, but nevertheless most practically important, environments in which molecular collisions take place. These molecular-level processes underlie many bulk phenomena of fundamental and applied interest, spanning evaporation, respiration, multiphase catalysis, and atmospheric chemistry. We review here the research that has, during the past decade or so, been unraveling the molecular-level mechanisms of inelastic and reactive collisions at the gas–liquid interface. Armed with the knowledge that such collisions with the outer layers of the interfacial region can be unambiguously distinguished, we show that the scattering of gas-phase projectiles is a promising new tool for the interrogation of liquid surfaces with extreme surface sensitivity. Especially for reactive scattering, this method also offers absolute chemical selectivity for the groups that react to produce a specific observed product.
-
-
-
Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies
Vol. 67 (2016), pp. 541–564More LessThe vibrational spectroscopy of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude so that the detection and identification of single molecules are possible. The enhancement of most linear and nonlinear vibrational spectroscopies has been demonstrated. In this review, we discuss theoretical approaches to understanding linear and nonlinear surface-enhanced vibrational spectroscopies. A unified description of enhancement mechanisms classified as either electromagnetic or chemical in nature is presented. Emphasis is placed on understanding the spectral changes necessary for interpretation of linear and nonlinear surface-enhanced vibrational spectroscopies.
-
-
-
Single-Molecule Studies in Live Cells
Vol. 67 (2016), pp. 565–585More LessLive-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments’ increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.
-
-
-
Excited-State Properties of Molecular Solids from First Principles
Vol. 67 (2016), pp. 587–616More LessMolecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.
-
-
-
Water-Mediated Hydrophobic Interactions
Vol. 67 (2016), pp. 617–638More LessHydrophobic interactions are driven by the combined influence of the direct attraction between oily solutes and an additional water-mediated interaction whose magnitude (and sign) depends sensitively on both solute size and attraction. The resulting delicate balance can lead to a slightly repulsive water-mediated interaction that drives oily molecules apart rather than pushing them together and thus opposes their direct (van der Waals) attraction for each other. As a consequence, competing solute size-dependent crossovers weaken hydrophobic interactions sufficiently that they are only expected to significantly exceed random thermal energy fluctuations for processes that bury more than ∼1 nm2 of water-exposed area.
-
-
-
Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer with Realistic Environment Interactions
Vol. 67 (2016), pp. 639–668More LessThis article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore–protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore–protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes.
-
-
-
Reaction Coordinates and Mechanistic Hypothesis Tests
Vol. 67 (2016), pp. 669–690More LessReaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers–Langer–Berezhkovskii–Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.
-
-
-
Fundamental Properties of One-Dimensional Zinc Oxide Nanomaterials and Implementations in Various Detection Modes of Enhanced Biosensing
Vol. 67 (2016), pp. 691–717More LessRecent bioapplications of one-dimensional (1D) zinc oxide (ZnO) nanomaterials, despite the short development period, have shown promising signs as new sensors and assay platforms offering exquisite biomolecular sensitivity and selectivity. The incorporation of 1D ZnO nanomaterials has proven beneficial to various modes of biodetection owing to their inherent properties. The more widely explored electrochemical and electrical approaches tend to capitalize on the reduced physical dimensionality, yielding a high surface-to-volume ratio, as well as on the electrical properties of ZnO. The newer development of the use of 1D ZnO nanomaterials in fluorescence-based biodetection exploits the innate optical property of their high anisotropy. This review considers stimulating research advances made to identify and understand fundamental properties of 1D ZnO nanomaterials, and examines various biosensing modes utilizing them, while focusing on the unique optical properties of individual and ensembles of 1D ZnO nanomaterials specifically pertaining to their bio-optical applications in simple and complex fluorescence assays.
-
-
-
Liquid Cell Transmission Electron Microscopy
Vol. 67 (2016), pp. 719–747More LessLiquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam–liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)