1932

Abstract

The superior colliculus (SC) is the most prominent visual center in mice. Studies over the past decade have greatly advanced our understanding of the function, organization, and development of the mouse SC, which has rapidly become a popular model in vision research. These studies have described the diverse and cell-type-specific visual response properties in the mouse SC, revealed their laminar and topographic organizations, and linked the mouse SC and downstream pathways with visually guided behaviors. Here, we summarize these findings, compare them with the rich literature of SC studies in other species, and highlight important gaps and exciting future directions. Given its clear importance in mouse vision and the available modern neuroscience tools, the mouse SC holds great promise for understanding the cellular, circuit, and developmental mechanisms that underlie visual processing, sensorimotor transformation, and, ultimately, behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034142
2018-09-15
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034142.html?itemId=/content/journals/10.1146/annurev-vision-091517-034142&mimeType=html&fmt=ahah

Literature Cited

  1. Ackman JB, Burbridge TJ, Crair MC 2012. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–25
    [Google Scholar]
  2. Ackman JB, Crair MC 2014. Role of emergent neural activity in visual map development. Curr. Opin. Neurobiol. 24:166–75
    [Google Scholar]
  3. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M 2012. A neural circuit for spatial summation in visual cortex. Nature 490:226–31
    [Google Scholar]
  4. Ahmadlou M, Heimel JA 2015. Preference for concentric orientations in the mouse superior colliculus. Nat. Commun. 6:6773
    [Google Scholar]
  5. Ahmadlou M, Tafreshiha A, Heimel JA 2017. Visual cortex limits pop-out in the superior colliculus of awake mice. Cereb. Cortex 27:5772–83
    [Google Scholar]
  6. Albano JE, Humphrey AL, Norton TT 1978. Laminar organization of receptive-field properties in tree shrew superior colliculus. J. Neurophysiol. 41:1140–64
    [Google Scholar]
  7. Altman J, Bayer SA 1981. Time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Exp. Brain Res. 42:424–34
    [Google Scholar]
  8. Atallah BV, Bruns W, Carandini M, Scanziani M 2012. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–70
    [Google Scholar]
  9. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50
    [Google Scholar]
  10. Baer R 1993. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin. Cancer Biol. 4:341–47
    [Google Scholar]
  11. Basso MA, May PJ 2017. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3:197–226
    [Google Scholar]
  12. Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W 2015. Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci. 35:10523–34
    [Google Scholar]
  13. Blanchard DC, Williams G, Lee EMC, Blanchard RJ 1981. Taming of wild Rattus norvegicus by lesions of the mesencephalic central gray. Physiol. Psychol. 9:157–63
    [Google Scholar]
  14. Blasdel GG 1992. Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12:3139–61
    [Google Scholar]
  15. Boka K, Chomsung R, Li J, Bickford ME 2006. Comparison of the ultrastructure of cortical and retinal terminals in the rat superior colliculus. Anat. Rec. A 288:850–58
    [Google Scholar]
  16. Bonin V, Histed MH, Yurgenson S, Reid RC 2011. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31:18506–21
    [Google Scholar]
  17. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17:2112–27
    [Google Scholar]
  18. Bovolenta P, Mason C 1987. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets. J. Neurosci. 7:1447–60
    [Google Scholar]
  19. Brainard MS, Knudsen EI 1998. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J. Neurosci. 18:3929–42
    [Google Scholar]
  20. Brückner G, Mareš V, Biesold D 1976. Neurogenesis in the visual system of the rat. An autoradiographic investigation. J. Comp. Neurol. 166:245–55
    [Google Scholar]
  21. Brun LR, Galich AM, Vega E, Salerni H, Maffei L et al. 2014. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment. SpringerPlus 3:676
    [Google Scholar]
  22. Bucher K, Sofroniew MV, Pannell R, Impey H, Smith AJ et al. 2000. The T cell oncogene Tal2 is necessary for normal development of the mouse brain. Dev. Biol. 227:533–44
    [Google Scholar]
  23. Buzsaki G, Stark E, Berenyi A, Khodagholy D, Kipke DR et al. 2015. Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86:92–105
    [Google Scholar]
  24. Byun H, Kwon S, Ahn HJ, Liu H, Forrest D et al. 2016. Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus. J. Comp. Neurol. 524:2300–21
    [Google Scholar]
  25. Callaway EM, Luo L 2015. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35:8979–85
    [Google Scholar]
  26. Cang J, Feldheim DA 2013. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36:51–77
    [Google Scholar]
  27. Cang J, Wang L, Stryker MP, Feldheim DA 2008. Roles of ephrin-As and structured activity in the development of functional maps in the superior colliculus. J. Neurosci. 28:11015–23
    [Google Scholar]
  28. Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA et al. 1998. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604–8
    [Google Scholar]
  29. Chapman B, Stryker MP, Bonhoeffer T 1996. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16:6443–53
    [Google Scholar]
  30. Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P 2012. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front. Neuroanat. 6:9
    [Google Scholar]
  31. Cruz-Martin A, El-Danaf RN, Osakada F, Sriram B, Dhande OS et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61
    [Google Scholar]
  32. Cynader M, Berman N 1972. Receptive-field organization of monkey superior colliculus. J. Neurophysiol. 35:187–201
    [Google Scholar]
  33. D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T 1995. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. . Nature 374:719–23
    [Google Scholar]
  34. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:2150–54
    [Google Scholar]
  35. Dean P, Mitchell IJ, Redgrave P 1988. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience 24:501–10
    [Google Scholar]
  36. Demb JB, Singer JH 2015. Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1:263–89
    [Google Scholar]
  37. Dhande OS, Huberman AD 2014. Retinal ganglion cell maps in the brain: implications for visual processing. Curr. Opin. Neurobiol. 24:133–42
    [Google Scholar]
  38. Dhande OS, Stafford BK, Lim JA, Huberman AD 2015. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1:291–328
    [Google Scholar]
  39. Diamond JS 2017. Inhibitory interneurons in the retina: types, circuitry, and function. Annu. Rev. Vis. Sci. 3:1–24
    [Google Scholar]
  40. Diao Y, Cui L, Chen Y, Burbridge TJ, Han W et al. 2018. Reciprocal connections between cortex and thalamus contribute to retinal axon targeting to dorsal lateral geniculate nucleus. Cereb. Cortex 28:1168–82
    [Google Scholar]
  41. Dräger UC, Hubel DH 1975.a Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input. Nature 253:203–4
    [Google Scholar]
  42. Dräger UC, Hubel DH 1975.b Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol. 38:690–713
    [Google Scholar]
  43. Dräger UC, Hubel DH 1976. Topography of visual and somatosensory projections to mouse superior colliculus. J. Neurophysiol. 39:91–101
    [Google Scholar]
  44. Edwards A, Treiber CD, Breuss M, Pidsley R, Huang GJ et al. 2011. Cytoarchitectural disruption of the superior colliculus and an enlarged acoustic startle response in the Tuba1a mutant mouse. Neuroscience 195:191–200
    [Google Scholar]
  45. Edwards MA, Caviness VS Jr., Schneider GE 1986.a Development of cell and fiber lamination in the mouse superior colliculus. J. Comp. Neurol. 248:395–409
    [Google Scholar]
  46. Edwards MA, Schneider GE, Caviness VS Jr. 1986.b Development of the crossed retinocollicular projection in the mouse. J. Comp. Neurol. 248:410–21
    [Google Scholar]
  47. Ellis EM, Gauvain G, Sivyer B, Murphy GJ 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:602–10
    [Google Scholar]
  48. Feinberg EH, Meister M 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–32
    [Google Scholar]
  49. Feldheim DA, O'Leary DD 2010. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2:a001768
    [Google Scholar]
  50. Feldon P, Kruger L 1970. Topography of the retinal projection upon the superior colliculus of the cat. Vis. Res. 10:135–43
    [Google Scholar]
  51. Fortin S, Chabli A, Dumont I, Shumikhina S, Itaya SK, Molotchnikoff S 1999. Maturation of visual receptive field properties in the rat superior colliculus. Brain Res. Dev. Brain Res. 112:55–64
    [Google Scholar]
  52. Friedman GC, O'Leary DD 1996. Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J. Neurosci. 16:5498–509
    [Google Scholar]
  53. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP et al. 2014. A cortical circuit for gain control by behavioral state. Cell 156:1139–52
    [Google Scholar]
  54. Furigo IC, de Oliveira WF, de Oliveira AR, Comoli E, Baldo MV et al. 2010. The role of the superior colliculus in predatory hunting. Neuroscience 165:1–15
    [Google Scholar]
  55. Gabriel JP, Trivedi CA, Maurer CM, Ryu S, Bollmann JH 2012. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. Neuron 76:1147–60
    [Google Scholar]
  56. Gale SD, Murphy GJ 2014. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34:13458–71
    [Google Scholar]
  57. Gale SD, Murphy GJ 2016. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci. 36:9111–23
    [Google Scholar]
  58. Gandhi NJ, Katnani HA 2011. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34:205–31
    [Google Scholar]
  59. Girman SV, Lund RD 2007. Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation. J. Neurophysiol. 98:161–77
    [Google Scholar]
  60. Glickfeld LL, Olsen SR 2017. Higher-order areas of the mouse visual cortex. Annu. Rev. Vis. Sci. 3:251–73
    [Google Scholar]
  61. Gray GE, Sanes JR 1991. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6:211–25
    [Google Scholar]
  62. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–64
    [Google Scholar]
  63. Hansen MJ, Dallal GE, Flanagan JG 2004. Retinal axon response to ephrin-As shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42:717–30
    [Google Scholar]
  64. Horton JC, Adams DL 2005. The cortical column: a structure without a function. Philos. Trans. R. Soc. B 360:837–62
    [Google Scholar]
  65. Hoy JL, Yavorska I, Wehr M, Niell CM 2016. Vision drives accurate approach behavior during prey capture in laboratory Mice. Curr. Biol. 26:3046–52
    [Google Scholar]
  66. Huang ZJ, Zeng H 2013. Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36:183–215
    [Google Scholar]
  67. Hubel DH, Wiesel TN 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  68. Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB et al. 2008. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–38
    [Google Scholar]
  69. Huberman AD, Niell CM 2011. What can mice tell us about how vision works. ? Trends Neurosci 34:464–73
    [Google Scholar]
  70. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–34
    [Google Scholar]
  71. Ikeda Y, Terashima T 1997. Expression of reelin, the gene responsible for the reeler mutation, in embryonic development and adulthood in the mouse. Dev. Dyn. 210:157–72
    [Google Scholar]
  72. Inayat S, Barchini J, Chen H, Feng L, Liu X, Cang J 2015. Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. J. Neurosci. 35:7992–8003
    [Google Scholar]
  73. Inoue A, Sanes JR 1997. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276:1428–31
    [Google Scholar]
  74. Itasaki N, Nakamura H 1996. A role for gradient en expression in positional specification on the optic tectum. Neuron 16:55–62
    [Google Scholar]
  75. Ito S, Feldheim DA, Litke AM 2017. Segregation of visual response properties in the mouse superior colliculus and their modulation during locomotion. J. Neurosci. 37:8428–43
    [Google Scholar]
  76. Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J 1991. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251:1239–43
    [Google Scholar]
  77. Kasai M, Isa T 2016. Imaging population dynamics of surround suppression in the superior colliculus. Eur. J. Neurosci. 44:2543–56
    [Google Scholar]
  78. Kay RB, Triplett JW 2017. Visual neurons in the superior colliculus innervated by Islet2+ or Islet2 retinal ganglion cells display distinct tuning properties. Front. Neural Circuits 11:73
    [Google Scholar]
  79. Keays DA, Tian G, Poirier K, Huang G-J, Siebold C et al. 2007. Mutations in α-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57
    [Google Scholar]
  80. Keller GB, Bonhoeffer T, Hubener M 2012. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–15
    [Google Scholar]
  81. Kim CK, Adhikari A, Deisseroth K 2017. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18:222–35
    [Google Scholar]
  82. Kim IJ, Zhang Y, Meister M, Sanes JR 2010. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J. Neurosci. 30:1452–62
    [Google Scholar]
  83. King AJ, Schnupp JW, Carlile S, Smith AL, Thompson ID 1996. The development of topographically-aligned maps of visual and auditory space in the superior colliculus. Prog. Brain Res. 112:335–50
    [Google Scholar]
  84. King AJ, Schnupp JW, Thompson ID 1998. Signals from the superficial layers of the superior colliculus enable the development of the auditory space map in the deeper layers. J. Neurosci. 18:9394–408
    [Google Scholar]
  85. Kojima T, Ishimaru S, Higashijima S, Takayama E, Akimaru H et al. 1991. Identification of a different-type homeobox gene, BarH1, possibly causing Bar (B) and Om(1D) mutations in Drosophila. PNAS 88:4343–47
    [Google Scholar]
  86. Kondo S, Ohki K 2016. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex. Nat. Neurosci. 19:316–19
    [Google Scholar]
  87. Koop KE, MacDonald LM, Lobe CG 1996. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. Mech. Dev. 59:73–87
    [Google Scholar]
  88. Krauzlis RJ, Lovejoy LP, Zenon A 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  89. Kusunoki T, Amemiya F 1983. Retinal projections in the hagfish. Eptatretus burgeri. Brain Res. 262:295–98
    [Google Scholar]
  90. Langer TP, Lund RD 1974. The upper layers of the superior colliculus of the rat: a Golgi study. J. Comp. Neurol. 158:418–35
    [Google Scholar]
  91. LaVail JH, Cowan WM 1971.a The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res 28:391–419
    [Google Scholar]
  92. LaVail JH, Cowan WM 1971.b The development of the chick optic tectum. II. Autoradiographic studies. Brain Res 28:421–41
    [Google Scholar]
  93. Li S, Price SM, Cahill H, Ryugo DK, Shen MM, Xiang M 2002. Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 129:3523–32
    [Google Scholar]
  94. Li S, Xiang M 2006. Barhl1 is required for maintenance of a large population of neurons in the zonal layer of the superior colliculus. Dev. Dyn. 235:2260–65
    [Google Scholar]
  95. Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, Tao HW 2015. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86:755–67
    [Google Scholar]
  96. Liu M, Wang L, Cang J 2014. Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus. Front. Neural Circuits 8:23
    [Google Scholar]
  97. Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A 1996. Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Curr. Biol. 6:1006–14
    [Google Scholar]
  98. Luo L, Flanagan JG 2007. Development of continuous and discrete neural maps. Neuron 56:284–300
    [Google Scholar]
  99. Lur G, Vinck MA, Tang L, Cardin JA, Higley MJ 2016. Projection-specific visual feature encoding by layer 5 cortical subnetworks. Cell Rep 14:2538–45
    [Google Scholar]
  100. Masland RH, Chow KL, Stewart DL 1971. Receptive-field characteristics of superior colliculus neurons in the rabbit. J. Neurophysiol. 34:148–56
    [Google Scholar]
  101. May PJ 2006. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151:321–78
    [Google Scholar]
  102. McIlwain JT, Buser P 1968. Receptive fields of single cells in the cat's superior colliculus. Exp. Brain Res. 5:314–25
    [Google Scholar]
  103. Michael CR 1972. Visual receptive fields of single neurons in superior colliculus of the ground squirrel. J. Neurophysiol. 35:815–32
    [Google Scholar]
  104. Millen KJ, Wurst W, Herrup K, Joyner AL 1994. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706
    [Google Scholar]
  105. Mize RR 1992. The organization of GABAergic neurons in the mammalian superior colliculus. Prog. Brain Res. 90:219–48
    [Google Scholar]
  106. Mo Z, Li S, Yang X, Xiang M 2004. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131:1607–18
    [Google Scholar]
  107. Mrsic-Flogel TD, Hofer SB, Creutzfeldt C, Cloez-Tayarani I, Changeux JP et al. 2005. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J. Neurosci. 25:6921–28
    [Google Scholar]
  108. Munz M, Gobert D, Schohl A, Poquerusse J, Podgorski K et al. 2014. Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344:904–9
    [Google Scholar]
  109. Nath A, Schwartz GW 2016. Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina. J. Neurosci. 36:3208–21
    [Google Scholar]
  110. Niell CM 2015. Cell types, circuits, and receptive fields in the mouse visual cortex. Annu. Rev. Neurosci. 38:413–31
    [Google Scholar]
  111. Niell CM, Stryker MP 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–36
    [Google Scholar]
  112. Niell CM, Stryker MP 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79
    [Google Scholar]
  113. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603
    [Google Scholar]
  114. Omi M, Harada H, Watanabe Y, Funahashi J, Nakamura H 2014. Role of En2 in the tectal laminar formation of chick embryos. Development 141:2131–38
    [Google Scholar]
  115. Pei Z, Chen Q, Koren D, Giammarinaro B, Acaron Ledesma H, Wei W 2015. Conditional knock-out of vesicular GABA transporter gene from starburst amacrine cells reveals the contributions of multiple synaptic mechanisms underlying direction selectivity in the retina. J. Neurosci. 35:13219–32
    [Google Scholar]
  116. Pierce ET 1973. Time of origin of neurons in the brain stem of the mouse. Prog. Brain Res. 40:53–65
    [Google Scholar]
  117. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56
    [Google Scholar]
  118. Prevost F, Lepore F, Guillemot JP 2007. Spatio-temporal receptive field properties of cells in the rat superior colliculus. Brain Res 1142:80–91
    [Google Scholar]
  119. Puelles L, Bendala MC 1978. Differentiation of neuroblasts in the chick optic tectum up to eight days of incubation: a Golgi study. Neuroscience 3:307–25
    [Google Scholar]
  120. Redgrave P, Dean P, Souki W, Lewis G 1981. Gnawing and changes in reactivity produced by microinjections of picrotoxin into the superior colliculus of rats. Psychopharmacology 75:198–203
    [Google Scholar]
  121. Rhoades RW, Chalupa LM 1976. Directional selectivity in the superior colliculus of the golden hamster. Brain Res 118:334–38
    [Google Scholar]
  122. Robinson DA 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12:1795–808
    [Google Scholar]
  123. Robinson DA, Fuchs AF 1969. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32:637–48
    [Google Scholar]
  124. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H et al. 1998. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608–12
    [Google Scholar]
  125. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307
    [Google Scholar]
  126. Roucoux A, Crommelinck M 1976. Eye movements evoked by superior colliculus stimulation in the alert cat. Brain Res 106:349–63
    [Google Scholar]
  127. Sahibzada N, Dean P, Redgrave P 1986. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6:723–33
    [Google Scholar]
  128. Saito T, Sawamoto K, Okano H, Anderson DJ, Mikoshiba K 1998. Mammalian BarH homologue is a potential regulator of neural bHLH genes. Dev. Biol. 199:216–25
    [Google Scholar]
  129. Sakakibara S, Misaki K, Terashima T 2003. Cytoarchitecture and fiber pattern of the superior colliculus are disrupted in the Shaking Rat Kawasaki. Brain Res. Dev. . Brain Res 141:1–13
    [Google Scholar]
  130. Sakatani T, Isa T 2004. PC-based high-speed video-oculography for measuring rapid eye movements in mice. Neurosci. Res. 49:123–31
    [Google Scholar]
  131. Sakatani T, Isa T 2007. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neurosci. Res. 58:324–31
    [Google Scholar]
  132. Savage MA, McQuade R, Thiele A 2017. Segregated fronto-cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors. J. Comp. Neurol. 525:1980–99
    [Google Scholar]
  133. Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfrieger FW et al. 2017. A molecular mechanism for the topographic alignment of convergent neural maps. eLife 6:e20470
    [Google Scholar]
  134. Schiller PH, Stryker M 1972. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35:915–24
    [Google Scholar]
  135. Shang C, Liu Z, Chen Z, Shi Y, Wang Q et al. 2015. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:1472–77
    [Google Scholar]
  136. Shanks JA, Ito S, Schaevitz L, Yamada J, Chen B et al. 2016. Corticothalamic axons are essential for retinal ganglion cell axon targeting to the mouse dorsal lateral geniculate nucleus. J. Neurosci. 36:5252–63
    [Google Scholar]
  137. Sherman SM, Guillery RW 2002. The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. B 357:1695–708
    [Google Scholar]
  138. Shi X, Barchini J, Ledesma HA, Koren D, Jin Y et al. 2017. Retinal origin of direction selectivity in the superior colliculus. Nat. Neurosci. 20:550–58
    [Google Scholar]
  139. Siminoff R, Schwassmann HO, Kruger L 1966. An electrophysiological study of the visual projection to the superior colliculus of the rat. J. Comp. Neurol. 127:435–44
    [Google Scholar]
  140. Simon DK, O'Leary DD 1992. Development of topographic order in the mammalian retinocollicular projection. J. Neurosci. 12:1212–32
    [Google Scholar]
  141. Simon HH, Scholz C, O'Leary DD 2005. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol. Cell Neurosci. 28:96–105
    [Google Scholar]
  142. Sjulson L, Cassataro D, DasGupta S, Miesenböck G 2016. Cell-specific targeting of genetically encoded tools for neuroscience. Annu. Rev. Genet. 50:571–94
    [Google Scholar]
  143. Sparks DL, Lee C, Rohrer WH 1990. Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harb. Symp. Quant. Biol. 55:805–11
    [Google Scholar]
  144. Stein BE 1984. Development of the superior colliculus. Annu. Rev. Neurosci. 7:95–125
    [Google Scholar]
  145. Stein BE, Goldberg SJ, Clamann HP 1976. The control of eye movements by the superior colliculus in the alert cat. Brain Res 118:469–74
    [Google Scholar]
  146. Sugiyama S, Nakamura H 2003. The role of Grg4 in tectal laminar formation. Development 130:451–62
    [Google Scholar]
  147. Sun W, Tan Z, Mensh BD, Ji N 2016. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19:308–15
    [Google Scholar]
  148. Svoboda K, Yasuda R 2006. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–39
    [Google Scholar]
  149. Sweeney NT, James KN, Sales EC, Feldheim DA 2015. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Dev. Neurobiol. 75:584–93
    [Google Scholar]
  150. Tan SS, Valcanis H, Kalloniatis M, Harvey A 2002. Cellular dispersion patterns and phenotypes in the developing mouse superior colliculus. Dev. Biol. 241:117–31
    [Google Scholar]
  151. Triplett JW 2014. Molecular guidance of retinotopic map development in the midbrain. Curr. Opin. Neurobiol. 24:7–12
    [Google Scholar]
  152. Triplett JW, Owens MT, Yamada J, Lemke G, Cang J et al. 2009. Retinal input instructs alignment of visual topographic maps. Cell 139:175–85
    [Google Scholar]
  153. Triplett JW, Phan A, Yamada J, Feldheim DA 2012. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism. J. Neurosci. 32:5264–71
    [Google Scholar]
  154. Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD et al. 2014. Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev 9:2
    [Google Scholar]
  155. Van Hooser SD, Heimel JA, Chung S, Nelson SB, Toth LJ 2005. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J. Neurosci. 25:19–28
    [Google Scholar]
  156. Wallace MT, Stein BE 1996. Sensory organization of the superior colliculus in cat and monkey. Prog. Brain Res. 112:301–11
    [Google Scholar]
  157. Wang L, Liu M, Segraves MA, Cang J 2015. Visual experience is required for the development of eye movement maps in the mouse superior colliculus. J. Neurosci. 35:12281–86
    [Google Scholar]
  158. Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J 2010. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J. Neurosci. 30:16573–84
    [Google Scholar]
  159. Wang Q, Burkhalter A 2013. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J. Neurosci. 33:1696–705
    [Google Scholar]
  160. Watanabe Y, Sakuma C, Yaginuma H 2014. NRP1-mediated Sema3A signals coordinate laminar formation in the developing chick optic tectum. Development 141:3572–82
    [Google Scholar]
  161. Watanabe Y, Yaginuma H 2015. Tangential cell migration during layer formation of chick optic tectum. Dev. Growth Differ. 57:539–43
    [Google Scholar]
  162. Wei P, Liu N, Zhang Z, Liu X, Tang Y et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756
    [Google Scholar]
  163. Wei W, Feller MB 2011. Organization and development of direction-selective circuits in the retina. Trends Neurosci 34:638–45
    [Google Scholar]
  164. Whelan G, Kreidl E, Wutz G, Egner A, Peters J-M, Eichele G 2012. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 31:71–82
    [Google Scholar]
  165. Wizenmann A, Stettler O, Moya KL 2015. Engrailed homeoproteins in visual system development. Cell Mol. Life Sci. 72:1433–45
    [Google Scholar]
  166. Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G 2015. An integrative role for the superior colliculus in selecting targets for movements. J. Neurophysiol. 114:2118–31
    [Google Scholar]
  167. Wurtz RH, Albano JE 1980. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3:189–226
    [Google Scholar]
  168. Wurtz RH, Goldberg ME 1972. Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. J. Neurophysiol. 35:575–86
    [Google Scholar]
  169. Xu H-P, Burbridge TJ, Chen M-G, Ge X, Zhang Y et al. 2015. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Dev. Neurobiol. 75:621–40
    [Google Scholar]
  170. Yilmaz M, Meister M 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:2011–15
    [Google Scholar]
  171. Zhang P, Guo Z, Zhang Y, Gao Z, Ji N et al. 2015. A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression. Proteome Sci 13:12
    [Google Scholar]
  172. Zhao X, Chen H, Liu X, Cang J 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63
    [Google Scholar]
  173. Zhao X, Liu M, Cang J 2014. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:202–13
    [Google Scholar]
  174. Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F et al. 2017. AAV-Mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:33–47
    [Google Scholar]
  175. Zmarz P, Keller GB 2016. Mismatch receptive fields in mouse visual cortex. Neuron 92:766–72
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034142
Loading
/content/journals/10.1146/annurev-vision-091517-034142
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error