1932

Abstract

Numerous studies have demonstrated the impact of imposed abnormal visual experience on the postnatal development of the visual system. These studies have provided fundamental insights into the mechanisms underlying neuroplasticity and its role in clinical care. However, the ocular motor responses of postnatal human infants largely define their visual experience in dynamic three-dimensional environments. Thus, the immature visual system needs to control its own visual experience. This review explores the interaction between the developing motor and sensory/perceptual visual systems, together with its importance in both typical development and the development of forms of strabismus and amblyopia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014741
2019-09-15
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014741.html?itemId=/content/journals/10.1146/annurev-vision-091718-014741&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahamsson M, Sjostrand J. 1996. Natural history of infantile anisometropia. Br. J. Ophthalmol. 80:860–63
    [Google Scholar]
  2. Agaoglu MN, LeSage SK, Joshi AC, Das VE 2014. Spatial patterns of fixation-switch behavior in strabismic monkeys. Investig. Ophthalmol. Vis. Sci. 55:1259–68
    [Google Scholar]
  3. Almeder LM, Peck LB, Howland HC 1990. Prevalence of anisometropia in volunteer laboratory and school screening populations. Investig. Ophthalmol. Vis. Sci. 31:2448–55
    [Google Scholar]
  4. Anker S, Atkinson J, Braddick O, Nardini M, Ehrlich D 2004. Non-cycloplegic refractive screening can identify infants whose visual outcome at 4 years is improved by spectacle correction. Strabismus 12:227–45
    [Google Scholar]
  5. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS 2017. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20:1404–12
    [Google Scholar]
  6. Aslin RN. 1977. Development of binocular fixation in human infants. J. Exp. Child Psychol. 23:133–50
    [Google Scholar]
  7. Aslin RN, Dumais ST. 1980. Binocular vision in infants: a review and a theoretical framework. Adv. Child Dev. Behav. 15:53–94
    [Google Scholar]
  8. Aslin RN, Jackson RW. 1979. Accommodative-convergence in young infants: development of a synergistic sensory-motor system. Can. J. Psychol. 33:222–31
    [Google Scholar]
  9. Atkinson J, Anker S, Bobier W, Braddick O, Durden K et al. 2000. Normal emmetropization in infants with spectacle correction for hyperopia. Investig. Ophthalmol. Vis. Sci. 41:3726–31
    [Google Scholar]
  10. Atkinson J, Braddick O, Robier B, Anker S, Ehrlich D et al. 1996. Two infant vision screening programmes: prediction and prevention of strabismus and amblyopia from photo- and videorefractive screening. Eye 10:Pt. 2189–98
    [Google Scholar]
  11. Babinsky E, Candy TR. 2013. Why do only some hyperopes become strabismic?. Investig. Ophthalmol. Vis. Sci. 54:4941–55
    [Google Scholar]
  12. Babu RJ, Clavagnier S, Bobier WR, Thompson B, Hess RF 2017. Regional extent of peripheral suppression in amblyopia. Investig. Ophthalmol. Vis. Sci. 58:2329–40
    [Google Scholar]
  13. Bagolini B. 1976. Part I. Sensorial anomalies in strabismus: suppression, anomalous correspondence, amblyopia. Doc. Ophthalmol. 41:1–22
    [Google Scholar]
  14. Banks MS. 1980. The development of visual accommodation during early infancy. Child Dev 51:646–66
    [Google Scholar]
  15. Banks MS, Aslin RN, Letson RD 1975. Sensitive period for the development of human binocular vision. Science 190:675–77
    [Google Scholar]
  16. Banks MS, Bennett PJ. 1988. Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. J. Opt. Soc. Am. A 5:2059–79
    [Google Scholar]
  17. Barrett BT, Bradley A, Candy TR 2013. The relationship between anisometropia and amblyopia. Prog. Retin. Eye Res. 36:120–58
    [Google Scholar]
  18. Barrett BT, Panesar GK, Scally AJ, Pacey IE 2012. A limited role for suppression in the central field of individuals with strabismic amblyopia. PLOS ONE 7:e36611
    [Google Scholar]
  19. Bharadwaj SR, Candy TR. 2009. Accommodative and vergence responses to conflicting blur and disparity stimuli during development. J. Vis. 9:114
    [Google Scholar]
  20. Bharadwaj SR, Candy TR. 2011. The effect of lens-induced anisometropia on accommodation and vergence during human visual development. Investig. Ophthalmol. Vis. Sci. 52:3595–603
    [Google Scholar]
  21. Bi H, Zhang B, Tao X, Harwerth RS, Smith EL 3rd, Chino YM 2011. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb. Cortex 21:2033–45
    [Google Scholar]
  22. Binda P, Morrone MC. 2018. Vision during saccadic eye movements. Annu. Rev. Vis. Sci. 4:193–213
    [Google Scholar]
  23. Birch EE. 2013. Amblyopia and binocular vision. Prog. Retin. Eye Res. 33:67–84
    [Google Scholar]
  24. Birch EE, Fawcett SL, Morale SE, Weakley DR Jr., Wheaton DH 2005. Risk factors for accommodative esotropia among hypermetropic children. Investig. Ophthalmol. Vis. Sci. 46:526–29
    [Google Scholar]
  25. Birch EE, Gwiazda J, Held R 1982. Stereoacuity development for crossed and uncrossed disparities in human infants. Vis. Res. 22:507–13
    [Google Scholar]
  26. Birch EE, Holmes JM. 2010. The clinical profile of amblyopia in children younger than 3 years of age. J. Am. Assoc. Pediatr. Opthalmol. Strabismus 14:494–97
    [Google Scholar]
  27. Birch EE, Stager DR. 1985. Monocular acuity and stereopsis in infantile esotropia. Investig. Ophthalmol. Vis. Sci. 26:1624–30
    [Google Scholar]
  28. Blake R, Logothetis N. 2002. Visual competition. Nat. Rev. Neurosci. 3:13–21
    [Google Scholar]
  29. Bobier WR, Guinta A, Kurtz S, Howland HC 2000. Prism induced accommodation in infants 3 to 6 months of age. Vis. Res. 40:529–37
    [Google Scholar]
  30. Braddick O. 1996. Binocularity in infancy. Eye 10:Pt. 2182–88
    [Google Scholar]
  31. Brookman KE. 1983. Ocular accommodation in human infants. Am. J. Optom. Physiol. Opt. 60:91–99
    [Google Scholar]
  32. Brown AM, Dobson V, Maier J 1987. Visual acuity of human infants at scotopic, mesopic and photopic luminances. Vis. Res. 27:1845–58
    [Google Scholar]
  33. Brown AM, Lindsey DT, Satgunam P, Miracle JA 2007. Critical immaturities limiting infant binocular stereopsis. Investig. Ophthalmol. Vis. Sci. 48:1424–34
    [Google Scholar]
  34. Campos EC. 1982. Binocularity in comitant strabismus: binocular visual fields studies. Doc. Ophthalmol. 53:249–81
    [Google Scholar]
  35. Candy TR, Banks MS. 1999. Use of an early nonlinearity to measure optical and receptor resolution in the human infant. Vis. Res. 39:3386–98
    [Google Scholar]
  36. Candy TR, Bharadwaj SR. 2007. The stability of steady state accommodation in human infants. J. Vis. 7:114
    [Google Scholar]
  37. Candy TR, Wang J, Ravikumar S 2009. Retinal image quality and postnatal visual experience during infancy. Optom. Vis. Sci. 86:E556–71
    [Google Scholar]
  38. Carter DB. 1965. Fixation disparity and heterophoria following prolonged wearing of prisms. Am. J. Optom. Arch. Am. Acad. Optom. 42:141–52
    [Google Scholar]
  39. Chino YM, Smith EL 3rd, Hatta S, Cheng H 1997. Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. J. Neurosci. 17:296–307
    [Google Scholar]
  40. Christiansen JH, D'Antona AD, Shevell SK 2017. Chromatic interocular-switch rivalry. J. Vis. 17:59
    [Google Scholar]
  41. Chung ST, Kumar G, Li RW, Levi DM 2015. Characteristics of fixational eye movements in amblyopia: limitations on fixation stability and acuity?. Vis. Res. 114:87–99
    [Google Scholar]
  42. Cook RC, Glasscock RE. 1951. Refractive and ocular findings in the newborn. Am. J. Ophthalmol. 34:1407–13
    [Google Scholar]
  43. Cunha AB, de Almeida Soares D, de Paula Carvalho R, Rosander K, von Hofsten C, Tudella E 2015. Maturational and situational determinants of reaching at its onset. Infant Behav. Dev. 41:64–72
    [Google Scholar]
  44. Das VE. 2016. Strabismus and the oculomotor system: insights from macaque models. Annu. Rev. Vis. Sci. 2:37–59
    [Google Scholar]
  45. Del Aguila-Carrasco AJ, Marin-Franch I, Bernal-Molina P, Esteve-Taboada JJ, Kruger PB et al. 2017. Accommodation responds to optical vergence and not defocus blur alone. Investig. Ophthalmol. Vis. Sci. 58:1758–63
    [Google Scholar]
  46. Ding J, Levi DM. 2014. Rebalancing binocular vision in amblyopia. Ophthalmic Physiol. Opt. 34:199–213
    [Google Scholar]
  47. Dobson V, Teller DY. 1978. Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies. Vis. Res. 18:1469–83
    [Google Scholar]
  48. Dysli M, Abegg M. 2016. Gaze-dependent phoria and vergence adaptation. J. Vis. 16:32
    [Google Scholar]
  49. Economides JR, Adams DL, Horton JC 2012. Perception via the deviated eye in strabismus. J. Neurosci. 32:10286–95
    [Google Scholar]
  50. Economides JR, Adams DL, Horton JC 2014. Eye choice for acquisition of targets in alternating strabismus. J. Neurosci. 34:14578–88
    [Google Scholar]
  51. Evans BJ. 2007. Monovision: a review. Ophthalmic Physiol. Opt. 27:417–39
    [Google Scholar]
  52. Fawcett SL, Wang YZ, Birch EE 2005. The critical period for susceptibility of human stereopsis. Investig. Ophthalmol. Vis. Sci. 46:521–25
    [Google Scholar]
  53. Fox R, Aslin RN, Shea SL, Dumais ST 1980. Stereopsis in human infants. Science 207:323–24
    [Google Scholar]
  54. Friedman DS, Repka MX, Katz J, Giordano L, Ibironke J et al. 2009. Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months: the Baltimore Pediatric Eye Disease Study. Ophthalmology 116:2128–34.e2
    [Google Scholar]
  55. Galloway JC, Thelen E. 2004. Feet first: object exploration in young infants. Infant Behav. Dev. 27:107–12
    [Google Scholar]
  56. Gandhi T, Kalia A, Ganesh S, Sinha P 2015. Immediate susceptibility to visual illusions after sight onset. Curr. Biol. 25:R358–59
    [Google Scholar]
  57. Gawne TJ, Siegwart JT Jr., Ward AH, Norton TT 2017. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp. Eye Res. 155:75–84
    [Google Scholar]
  58. Hainline L, Riddell PM. 1995. Binocular alignment and vergence in early infancy. Vis. Res. 35:3229–36
    [Google Scholar]
  59. Hallum LE, Shooner C, Kumbhani RD, Kelly JG, Garcia-Marin V et al. 2017. Altered balance of receptive field excitation and suppression in visual cortex of amblyopic macaque monkeys. J. Neurosci. 37:8216–26
    [Google Scholar]
  60. Harb E, Wildsoet C. 2019. Origins of refractive errors: environmental and genetic factors. Annu. Rev. Vis. Sci 5: In press
    [Google Scholar]
  61. Hartmann EE, Drews-Botsch C, DuBois LG, Cotsonis G, Lambert SR 2018. Correlation of monocular grating acuity at age 12 months with recognition acuity at age 4.5 years: findings from the Infant Aphakia Treatment Study. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 22:299–303.e2
    [Google Scholar]
  62. Harwerth RS, Fredenburg PM. 2003. Binocular vision with primary microstrabismus. Investig. Ophthalmol. Vis. Sci. 44:4293–306
    [Google Scholar]
  63. Haynes H, White BL, Held R 1965. Visual accommodation in human infants. Science 148:528–30
    [Google Scholar]
  64. Henson DB, North R. 1980. Adaptation to prism-induced heterophoria. Am. J. Optom. Physiol. Opt. 57:129–37
    [Google Scholar]
  65. Hess RF, Thompson B. 2015. Amblyopia and the binocular approach to its therapy. Vis. Res. 114:4–16
    [Google Scholar]
  66. Horton JC, Hocking DR. 1997. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J. Neurosci. 17:3684–709
    [Google Scholar]
  67. Horwood A. 2003. Neonatal ocular misalignments reflect vergence development but rarely become esotropia. Br. J. Ophthalmol. 87:1146–50
    [Google Scholar]
  68. Horwood AM, Riddell PM. 2013. Developmental changes in the balance of disparity, blur, and looming/proximity cues to drive ocular alignment and focus. Perception 42:693–715
    [Google Scholar]
  69. Horwood AM, Riddell PM. 2014. Disparity-driven versus blur-driven models of accommodation and convergence in binocular vision and intermittent strabismus. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 18:576–83
    [Google Scholar]
  70. Ingram RM, Arnold PE, Dally S, Lucas J 1990. Results of a randomised trial of treating abnormal hypermetropia from the age of 6 months. Br. J. Ophthalmol. 74:158–59
    [Google Scholar]
  71. Ingram RM, Arnold PE, Dally S, Lucas J 1991. Emmetropisation, squint, and reduced visual acuity after treatment. Br. J. Ophthalmol. 75:414–16
    [Google Scholar]
  72. Ingram RM, Gill LE, Goldacre MJ 1994. Emmetropisation and accommodation in hypermetropic children before they show signs of squint—a preliminary analysis. Bull. Soc. Belge Ophtalmol. 253:41–56
    [Google Scholar]
  73. Jones-Jordan L, Wang X, Scherer RW, Mutti DO 2014. Spectacle correction versus no spectacles for prevention of strabismus in hyperopic children. Cochrane Database Syst. Rev. 2014:CD007738
    [Google Scholar]
  74. Kavsek M, Yonas A, Granrud CE 2012. Infants’ sensitivity to pictorial depth cues: a review and meta-analysis of looking studies. Infant Behav. Dev. 35:109–28
    [Google Scholar]
  75. Kheradmand A, Zee DS. 2011. Cerebellum and ocular motor control. Front. Neurol. 2:53
    [Google Scholar]
  76. Kiorpes L, Boothe RG. 1980. The time course for the development of strabismic amblyopia in infant monkeys (Macaca nemestrina). Investig. Ophthalmol. Vis. Sci. 19:841–45
    [Google Scholar]
  77. Krauzlis RJ, Goffart L, Hafed ZM 2017. Neuronal control of fixation and fixational eye movements. Philos. Trans. R. Soc. B 372:20160205
    [Google Scholar]
  78. Kwon M, Lu ZL, Miller A, Kazlas M, Hunter DG, Bex PJ 2014. Assessing binocular interaction in amblyopia and its clinical feasibility. PLOS ONE 9:e100156
    [Google Scholar]
  79. Larsen JS. 1971. The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty. Acta Ophthalmol. 49:873–86
    [Google Scholar]
  80. Lee H, Purohit R, Patel A, Papageorgiou E, Sheth V et al. 2015. In vivo foveal development using optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 56:4537–45
    [Google Scholar]
  81. Lonini L, Forestier S, Teuliere C, Zhao Y, Shi BE, Triesch J 2013. Robust active binocular vision through intrinsically motivated learning. Front. Neurorobot. 7:20
    [Google Scholar]
  82. MacLachlan C, Howland HC. 2002. Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 month to 19 years. Ophthalmic Physiol. Opt. 22:175–82
    [Google Scholar]
  83. Maconachie GD, Gottlob I, McLean RJ 2013. Risk factors and genetics in common comitant strabismus: a systematic review of the literature. JAMA Ophthalmol 131:1179–86
    [Google Scholar]
  84. Maruko I, Zhang B, Tao X, Tong J, Smith EL 3rd, Chino YM 2008. Postnatal development of disparity sensitivity in visual area 2 (V2) of macaque monkeys. J. Neurophysiol. 100:2486–95
    [Google Scholar]
  85. Maurer D, Mondloch CJ, Lewis TL 2007. Effects of early visual deprivation on perceptual and cognitive development. Prog. Brain Res. 164:87–104
    [Google Scholar]
  86. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB 2001. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch. Ophthalmol. 119:1625–28
    [Google Scholar]
  87. Mays LE, Gamlin PD. 1995. Neuronal circuitry controlling the near response. Curr. Opin. Neurobiol. 5:763–68
    [Google Scholar]
  88. McKee SP, Levi DM, Movshon JA 2003. The pattern of visual deficits in amblyopia. J. Vis. 3:55
    [Google Scholar]
  89. McKee SP, Levi DM, Schor CM, Movshon JA 2016. Saccadic latency in amblyopia. J. Vis. 16:53
    [Google Scholar]
  90. McKyton A, Ben-Zion I, Doron R, Zohary E 2015. The limits of shape recognition following late emergence from blindness. Curr. Biol. 25:2373–78
    [Google Scholar]
  91. Meier K, Giaschi D. 2017. Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Investig. Ophthalmol. Vis. Sci. 58:1779–800
    [Google Scholar]
  92. Movshon JA, Eggers HM, Gizzi MS, Hendrickson AE, Kiorpes L, Boothe RG 1987. Effects of early unilateral blur on the macaque's visual system. III. Physiological observations. J. Neurosci. 7:1340–51
    [Google Scholar]
  93. Mutti DO, Mitchell GL, Jones LA, Friedman NE, Frane SL et al. 2009. Accommodation, acuity, and their relationship to emmetropization in infants. Optom. Vis. Sci. 86:666–76
    [Google Scholar]
  94. Mutti DO, Sinnott LT, Mitchell GL, Jordan LA, Friedman NE et al. 2018. Ocular component development during infancy and early childhood. Optom. Vis. Sci. 95:976–85
    [Google Scholar]
  95. Niechwiej-Szwedo E, Goltz HC, Chandrakumar M, Hirji ZA, Wong AM 2010. Effects of anisometropic amblyopia on visuomotor behavior, I: saccadic eye movements. Investig. Ophthalmol. Vis. Sci. 51:6348–54
    [Google Scholar]
  96. Nitta T, Akao T, Kurkin S, Fukushima K 2008. Vergence eye movement signals in the cerebellar dorsal vermis. Prog. Brain Res. 171:173–76
    [Google Scholar]
  97. Norcia AM, Gerhard HE, Meredith WJ 2017. Development of relative disparity sensitivity in human visual cortex. J. Neurosci. 37:5608–19
    [Google Scholar]
  98. Norcia AM, Tyler CW, Hamer RD 1990. Development of contrast sensitivity in the human infant. Vis. Res. 30:1475–86
    [Google Scholar]
  99. Oohira A, Zee DS, Guyton DL 1991. Disconjugate adaptation to long-standing, large-amplitude, spectacle-corrected anisometropia. Investig. Ophthalmol. Vis. Sci. 32:1693–703
    [Google Scholar]
  100. Ooi TL, Su YR, Natale DM, He ZJ 2013. A push-pull treatment for strengthening the ‘lazy eye’ in amblyopia. Curr. Biol. 23:R309–10
    [Google Scholar]
  101. Parks MM. 1958. Abnormal accommodative convergence in squint. AMA Arch. Ophthalmol. 59:364–80
    [Google Scholar]
  102. Petrig B, Julesz B, Kropfl W, Baumgartner G, Anliker M 1981. Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence. Science 213:1402–5
    [Google Scholar]
  103. Pollard ZF, Greenberg MF, Bordenca M, Elliott J, Hsu V 2011. Strabismus precipitated by monovision. Am. J. Ophthalmol. 152:479–82.e1
    [Google Scholar]
  104. Pryor HB. 1969. Objective measurement of interpupillary distance. Pediatrics 44:973–77
    [Google Scholar]
  105. Rabin J, Van Sluyters RC, Malach R 1981. Emmetropization: a vision-dependent phenomenon. Investig. Ophthalmol. Vis. Sci. 20:561–64
    [Google Scholar]
  106. Reddy AK, Freeman CH, Paysse EA, Coats DK 2009. A data-driven approach to the management of accommodative esotropia. Am. J. Ophthalmol. 148:466–70
    [Google Scholar]
  107. Repka MX, Wallace DK, Beck RW, Kraker RT, Birch EE et al. 2005. Two-year follow-up of a 6-month randomized trial of atropine versus patching for treatment of moderate amblyopia in children. Arch. Ophthalmol. 123:149–57
    [Google Scholar]
  108. Rucker F, Britton S, Spatcher M, Hanowsky S 2015. Blue light protects against temporal frequency sensitive refractive changes. Investig. Ophthalmol. Vis. Sci. 56:6121–31
    [Google Scholar]
  109. Schor CM. 1979. The relationship between fusional vergence eye movements and fixation disparity. Vis. Res. 19:1359–67
    [Google Scholar]
  110. Schor CM. 1983. Subcortical binocular suppression affects the development of latent and optokinetic nystagmus. Am. J. Optom. Physiol. Opt. 60:481–502
    [Google Scholar]
  111. Schor CM. 1985. Development of stereopsis depends upon contrast sensitivity and spatial tuning. J. Am. Optom. Assoc. 56:628–35
    [Google Scholar]
  112. Schor CM, Alexander J, Cormack L, Stevenson S 1992. Negative feedback control model of proximal convergence and accommodation. Ophthalmic Physiol. Opt. 12:307–18
    [Google Scholar]
  113. Seemiller ES, Cumming BG, Candy TR 2018a. Human infants can generate vergence responses to retinal disparity by 5 to 10 weeks of age. J. Vis. 18:617
    [Google Scholar]
  114. Seemiller ES, Port NL, Candy TR 2018b. The gaze stability of 4- to 10-week-old human infants. J. Vis. 18:515
    [Google Scholar]
  115. Seemiller ES, Wang J, Candy TR 2016. Sensitivity of vergence responses of 5- to 10-week-old human infants. J. Vis. 16:320
    [Google Scholar]
  116. Sengpiel F, Blakemore C, Kind PC, Harrad R 1994. Interocular suppression in the visual cortex of strabismic cats. J. Neurosci. 14:6855–71
    [Google Scholar]
  117. Shooner C, Hallum LE, Kumbhani RD, Garcia-Marin V, Kelly JG et al. 2017. Asymmetric dichoptic masking in visual cortex of amblyopic macaque monkeys. J. Neurosci. 37:8734–41
    [Google Scholar]
  118. Sireteanu R. 1982. Binocular vision in strabismic humans with alternating fixation. Vis. Res. 22:889–96
    [Google Scholar]
  119. Skoczenski AM, Norcia AM. 1998. Neural noise limitations on infant visual sensitivity. Nature 391:697–700
    [Google Scholar]
  120. Slater AM, Findlay JM. 1975. Binocular fixation in the newborn baby. J. Exp. Child Psychol. 20:248–73
    [Google Scholar]
  121. Smith EL 3rd, Hung LF, Arumugam B 2014. Visual regulation of refractive development: insights from animal studies. Eye 28:180–88
    [Google Scholar]
  122. Smith EL 3rd, Hung LF, Arumugam B, Wensveen JM, Chino YM, Harwerth RS 2017. Observations on the relationship between anisometropia, amblyopia and strabismus. Vis. Res. 134:26–42
    [Google Scholar]
  123. Somer D, Karabulut E, Cinar FG, Altiparmak UE, Unlu N 2018. The role of dynamic retinoscopy in predicting infantile accommodative esotropia and influencing emmetropization. J. Binocul. Vis. Ocul. Motil. 68:54–58
    [Google Scholar]
  124. Spiegel DP, Baldwin AS, Hess RF 2016. The relationship between fusion, suppression, and diplopia in normal and amblyopic vision. Investig. Ophthalmol. Vis. Sci. 57:5810–17
    [Google Scholar]
  125. Sreenivasan V, Babinsky EE, Wu Y, Candy TR 2016. Objective measurement of fusional vergence ranges and heterophoria in infants and preschool children. Investig. Ophthalmol. Vis. Sci. 57:2678–88
    [Google Scholar]
  126. Stryker MP, Lowel S. 2018. Amblyopia: new molecular/pharmacological and environmental approaches. Vis. Neurosci. 35:E018
    [Google Scholar]
  127. Tao X, Zhang B, Shen G, Wensveen J, Smith EL 3rd et al. 2014. Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys. J. Neurosci. 34:13840–54
    [Google Scholar]
  128. Teller DY. 1997. First glances: the vision of infants. The Friedenwald lecture. Investig. Ophthalmol. Vis. Sci. 38:2183–203
    [Google Scholar]
  129. Tondel GM, Candy TR. 2008. Accommodation and vergence latencies in human infants. Vis. Res. 48:564–76
    [Google Scholar]
  130. Turner JE, Horwood AM, Houston SM, Riddell PM 2002. Development of the response AC/A ratio over the first year of life. Vis. Res. 42:2521–32
    [Google Scholar]
  131. Vogelsang L, Gilad-Gutnick S, Ehrenberg E, Yonas A, Diamond S et al. 2018. Potential downside of high initial visual acuity. PNAS 115:11333–38
    [Google Scholar]
  132. Wallace DK, Morse CL, Melia M, Sprunger DT, Repka MX et al. 2018. Pediatric eye evaluations Preferred Practice Pattern®. I. Vision screening in the primary care and community setting; II. Comprehensive ophthalmic examination. Ophthalmology 125:P184–227
    [Google Scholar]
  133. Walton MMG, Pallus A, Fleuriet J, Mustari MJ, Tarczy-Hornoch K 2017. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome. J. Neurophysiol. 118:280–99
    [Google Scholar]
  134. Wang J, Candy TR. 2010. The sensitivity of the 2- to 4-month-old human infant accommodation system. Investig. Ophthalmol. Vis. Sci. 51:3309–17
    [Google Scholar]
  135. Wang T, Wang LH. 2014. Surgical treatment for residual or recurrent strabismus. Int. J. Ophthalmol. 7:1056–63
    [Google Scholar]
  136. Wang Y, Zhang B, Tao X, Wensveen JM, Smith ELR, Chino YM 2017. Noisy spiking in visual area V2 of amblyopic monkeys. J. Neurosci. 37:922–35
    [Google Scholar]
  137. Wiesel TN. 1982. Postnatal development of the visual cortex and the influence of environment. Nature 299:583–91
    [Google Scholar]
  138. Wojciechowski R. 2011. Nature and nurture: the complex genetics of myopia and refractive error. Clin. Genet. 79:301–20
    [Google Scholar]
  139. Wu Y, Sreenivasan V, Babinsky EE, Candy TR 2016. Adaptation of horizontal eye alignment in the presence of prism in young children. J. Vis. 16:106
    [Google Scholar]
  140. Yang E, Brascamp J, Kang MS, Blake R 2014. On the use of continuous flash suppression for the study of visual processing outside of awareness. Front. Psychol. 5:724
    [Google Scholar]
  141. Yuodelis C, Hendrickson A. 1986. A qualitative and quantitative analysis of the human fovea during development. Vis. Res. 26:847–55
    [Google Scholar]
  142. Zhu Q, Triesch J, Shi BE 2017. Joint learning of binocularly driven saccades and vergence by active efficient coding. Front. Neurorobot. 11:58
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014741
Loading
/content/journals/10.1146/annurev-vision-091718-014741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error