1932

Abstract

Recent data have shown that sleep plays a beneficial role for cognitive functions such as declarative memory consolidation and perceptual learning. In this article, we review recent findings on the role of sleep in promoting adaptive visual response changes in the lateral geniculate nucleus and primary visual cortex following novel visual experiences. We discuss these findings in the context of what is currently known about how sleep affects the activity and function of thalamocortical circuits and current hypotheses regarding how sleep facilitates synaptic plasticity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014715
2019-09-15
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014715.html?itemId=/content/journals/10.1146/annurev-vision-091718-014715&mimeType=html&fmt=ahah

Literature Cited

  1. Amzica F, Steriade M. 1998. Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107:269–83
    [Google Scholar]
  2. Antonini A, Fagiolini M, Stryker MP 1999. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19:114388–406
    [Google Scholar]
  3. Aton SJ. 2013. Set and setting: how behavioral state regulates sensory function and plasticity. Neurobiol. Learn. Mem. 106:1–10
    [Google Scholar]
  4. Aton SJ, Broussard C, Dumoulin M, Seibt J, Watson A et al. 2013. Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons. PNAS 110:83101–6
    [Google Scholar]
  5. Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N et al. 2009. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61:3454–66
    [Google Scholar]
  6. Aton SJ, Suresh A, Broussard C, Frank MG 2014. Sleep promotes cortical response potentiation following visual experience. Sleep 37:71163–70
    [Google Scholar]
  7. Ball GJ, Gloor P, Schaul N 1977. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr. Clin. Neurophysiol. 43:3346–61
    [Google Scholar]
  8. Benington JH, Frank MG. 2003. Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 69:271–101
    [Google Scholar]
  9. Berger RJ, Oswald I. 1962. Effects of sleep deprivation on behaviour, subsequent sleep, and dreaming. J. Ment. Sci. 108:455457–65
    [Google Scholar]
  10. Bonjean M, Baker T, Lemieux M, Timofeev I, Sejnowski T, Bazhenov M 2011. Corticothalamic feedback controls sleep spindle duration in vivo. J. Neurosci. 31:259124–34
    [Google Scholar]
  11. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D 1981. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51:5483–93
    [Google Scholar]
  12. Bortone DS, Olsen SR, Scanziani M 2014. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82:2474–85
    [Google Scholar]
  13. Bremer F. 1935. “Cerveau isole” et physiologie du sommeil. CR Soc. Biol. 118:1235–41
    [Google Scholar]
  14. Bridi MCD, Aton SJ, Seibt J, Renouard L, Coleman T, Frank MG 2015. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci. Adv. 1:6e1500105
    [Google Scholar]
  15. Briggs F, Usrey WM. 2008. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18:4403–7
    [Google Scholar]
  16. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW 2012. Control of sleep and wakefulness. Physiol. Rev. 92:31087–187
    [Google Scholar]
  17. Cantero JL, Atienza M, Salas RM, Dominguez-Marin E 2002. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep. J. Neurosci. 22:114702–8
    [Google Scholar]
  18. Cardin JA, Palmer LA, Contreras D 2007. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27:3910333–44
    [Google Scholar]
  19. Chauvette S, Seigneur J, Timofeev I 2012. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75:61105–13
    [Google Scholar]
  20. Clawson BC, Durkin J, Aton SJ 2016. Form and function of sleep spindles across the lifespan. Neural Plast 2016.6936381
    [Google Scholar]
  21. Clawson BC, Durkin J, Suresh AK, Pickup EJ, Broussard CG, Aton SJ 2018. Sleep promotes, and sleep loss inhibits, selective changes in firing rate, response properties and functional connectivity of primary visual cortex neurons. Front. Syst. Neurosci. 12:40
    [Google Scholar]
  22. Contreras D, Destexhe A, Sejnowski TJ, Steriade M 1996a. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274:5288771–74
    [Google Scholar]
  23. Contreras D, Timofeev I, Steriade M 1996b. Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. 494:1251–64
    [Google Scholar]
  24. Cooke SF, Bear MF. 2010. Visual experience induces long-term potentiation in the primary visual cortex. J. Neurosci. 30:4816304–13
    [Google Scholar]
  25. Crair MC, Ruthazer ES, Gillespie DC, Stryker MP 1997. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19:2307–18
    [Google Scholar]
  26. Crick F. 1984. Function of the thalamic reticular complex: the searchlight hypothesis. PNAS 81:144586–90
    [Google Scholar]
  27. Curro Dossi R, Pare D, Steriade M 1991. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J. Neurophysiol. 65:3393–406
    [Google Scholar]
  28. Datta S. 2000. Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J. Neurosci. 20:228607–13
    [Google Scholar]
  29. Datta S, Li G, Auerbach S 2008. Activation of phasic pontine‐wave generator in the rat: a mechanism for expression of plasticity‐related genes and proteins in the dorsal hippocampus and amygdala. Eur. J. Neurosci. 27:71876–92
    [Google Scholar]
  30. Datta S, O'Malley MW. 2013. Fear extinction memory consolidation requires potentiation of pontine-wave activity during REM sleep. J. Neurosci. 33:104561–69
    [Google Scholar]
  31. De Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH et al. 2017. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355:6324507–10
    [Google Scholar]
  32. Diekelmann S, Born J. 2010. The memory function of sleep. Nat. Rev. Neurosci. 11:2114–26
    [Google Scholar]
  33. Dräger UC. 1974. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res 82:2284–92
    [Google Scholar]
  34. Dumoulin MC, Aton SJ, Watson AJ, Renouard L, Coleman T, Frank MG 2013. Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cereb. Cortex 25:2507–15
    [Google Scholar]
  35. Durkin J, Aton SJ. 2016. Sleep-dependent potentiation in the visual system is at odds with the synaptic homeostasis hypothesis. Sleep 39:1155–59
    [Google Scholar]
  36. Durkin J, Suresh AK, Colbath J, Broussard C, Wu J et al. 2017. Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity. PNAS 114:3910485–90
    [Google Scholar]
  37. Eban-Rothschild A, Appelbaum L, de Lecea L 2017. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology 43:5937–52
    [Google Scholar]
  38. Frank MG. 2012. Erasing synapses in sleep: Is it time to be SHY?. Neural Plast 2012.264378
    [Google Scholar]
  39. Frank MG. 2017. Sleep and plasticity in the visual cortex: more than meets the eye. Curr. Opin. Neurobiol. 44:8–12
    [Google Scholar]
  40. Frank MG, Issa NP, Stryker MP 2001. Sleep enhances plasticity in the developing visual cortex. Neuron 30:1275–87
    [Google Scholar]
  41. Freeman RD, Olson CR. 1979. Is there a ‘consolidation’ effect for monocular deprivation?. Nature 282:5737404–6
    [Google Scholar]
  42. Frenkel MY, Bear MF. 2004. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:6917–23
    [Google Scholar]
  43. Frenkel MY, Sawtell NB, Diogo ACM, Yoon B, Neve RL, Bear MF 2006. Instructive effect of visual experience in mouse visual cortex. Neuron 51:3339–49
    [Google Scholar]
  44. Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP 2015. A cortical disinhibitory circuit for enhancing adult plasticity. eLife 4:e05558
    [Google Scholar]
  45. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP et al. 2014. A cortical circuit for gain control by behavioral state. Cell 156:61139–52
    [Google Scholar]
  46. Fuentealba P, Steriade M. 2005. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog. Neurobiol. 75:2125–41
    [Google Scholar]
  47. Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M 2005. Membrane bistability in thalamic reticular neurons during spindle oscillations. J. Neurophysiol. 93:1294–304
    [Google Scholar]
  48. Glenn LL, Steriade M. 1982. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J. Neurosci. 2:101387–404
    [Google Scholar]
  49. Golomb D, Wang XJ, Rinzel J 1996. Propagation of spindle waves in a thalamic slice model. J. Neurophysiol. 75:2750–69
    [Google Scholar]
  50. Golshani P, Liu XB, Jones EG 2001. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. PNAS 98:74172–77
    [Google Scholar]
  51. Gott JA, Liley DT, Hobson JA 2017. Towards a functional understanding of PGO waves. Front. Hum. Neurosci. 11:89
    [Google Scholar]
  52. Grubb MS, Thompson ID. 2003. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90:63594–607
    [Google Scholar]
  53. Halassa MM, Chen Z, Wimmer RD, Brunetti PM, Zhao S et al. 2014. State-dependent architecture of thalamic reticular subnetworks. Cell 158:4808–21
    [Google Scholar]
  54. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG 2013. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80:2335–42
    [Google Scholar]
  55. Hengen KB, Pacheco AT, McGregor JN, Van Hooser SD, Turrigiano GG 2016. Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165:1180–91
    [Google Scholar]
  56. Hirsch JC, Fourment A, Marc ME 1983. Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res 259:2308–12
    [Google Scholar]
  57. Hu B, Steriade M, Deschênes M 1989. The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neuroscience 31:11–12
    [Google Scholar]
  58. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:1106–54
    [Google Scholar]
  59. Hubel DH, Wiesel TN. 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206:2419–36
    [Google Scholar]
  60. Huber R, Ghilardi MF, Massimini M, Tononi G 2004. Local sleep and learning. Nature 430:699578–81
    [Google Scholar]
  61. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works?. Trends Neurosci 34:9464–73
    [Google Scholar]
  62. Jones EG. 2002. Thalamic circuitry and thalamocortical synchrony. Philos. Trans. R. Soc. Lond. B 357:14281659–73
    [Google Scholar]
  63. Llinas RR, Grace AA, Yarom Y 1991. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. PNAS 88:3897–901
    [Google Scholar]
  64. Lüthi A. 2014. Sleep spindles: where they come from, what they do. Neuroscientist 20:3243–56
    [Google Scholar]
  65. Lytton WW, Destexhe A, Sejnowski TJ 1996. Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:3673–84
    [Google Scholar]
  66. Ma WP, Liu BH, Li YT, Huang ZJ, Zhang LI, Tao HW 2010. Visual representations by cortical somatostatin inhibitory neurons—selective but with weak and delayed responses. J. Neurosci. 30:4314371–79
    [Google Scholar]
  67. Maquet P. 2001. The role of sleep in learning and memory. Science 294:55441048–52
    [Google Scholar]
  68. Marshall L, Helgadóttir H, Mölle M, Born J 2006. Boosting slow oscillations during sleep potentiates memory. Nature 444:7119610–13
    [Google Scholar]
  69. Marshel JH, Kaye AP, Nauhaus I, Callaway EM 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:4713–20
    [Google Scholar]
  70. Massimini M, Amzica F. 2001. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J. Neurophysiol. 85:31346–50
    [Google Scholar]
  71. McCormick DA. 1992. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39:4337–88
    [Google Scholar]
  72. McCormick DA, Bal T. 1997. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20:185–215
    [Google Scholar]
  73. McCormick DA, Pape HC. 1990. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J. Physiol. 431:1291–318
    [Google Scholar]
  74. McCormick DA, Wang Z. 1991. Serotonin and noradrenaline excite GABAergic neurones of the guinea‐pig and cat nucleus reticularis thalami. J. Physiol. 442:1235–55
    [Google Scholar]
  75. Miyamoto D, Hirai D, Fung CCA, Inutsuka A, Odagawa M et al. 2016. Top-down cortical input during NREM sleep consolidates perceptual memory. Science 352:62911315–18
    [Google Scholar]
  76. Miyawaki H, Diba K. 2016. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26:7893–902
    [Google Scholar]
  77. Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M 2007. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:6961–72
    [Google Scholar]
  78. Ngo HVV, Martinetz T, Born J, Mölle M 2013. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78:3545–53
    [Google Scholar]
  79. Niell CM. 2013. Vision: more than expected in the early visual system. Curr. Biol. 23:16R681–84
    [Google Scholar]
  80. Niell CM. 2015. Cell types, circuits, and receptive fields in the mouse visual cortex. Annu. Rev. Neurosci. 38:413–31
    [Google Scholar]
  81. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:4472–79
    [Google Scholar]
  82. Niknazar M, Krishnan GP, Bazhenov M, Mednick SC 2015. Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans. PLOS ONE 10:12e0144720
    [Google Scholar]
  83. Nun A, CurróDossi R, Contreras D, Steriade M 1992. Intracellular evidence for incompatibility between spindle and delta oscillations in thalamocortical neurons of cat. Neuroscience 48:175–85
    [Google Scholar]
  84. Nunez A, Amzica F, Steriade M 1992. Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons. Neuroscience 51:17–10
    [Google Scholar]
  85. Olsen SR, Bortone DS, Adesnik H, Scanziani M 2012. Gain control by layer six in cortical circuits of vision. Nature 483:738747–52
    [Google Scholar]
  86. Olson CR, Freeman RD. 1980. Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 39:117–21
    [Google Scholar]
  87. Pavlov PI. 2010. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17:3136–41
    [Google Scholar]
  88. Petsche H, Pockberger H, Rappelsberger P 1984. On the search for the sources of the electroencephalogram. Neuroscience 11:11–27
    [Google Scholar]
  89. Pinault D, Deschênes M. 1992. Muscarinic inhibition of reticular thalamic cells by basal forebrain neurones. Neuroreport 3:121101–4
    [Google Scholar]
  90. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:114642–56
    [Google Scholar]
  91. Puentes-Mestril C, Aton SJ. 2017. Linking network activity to synaptic plasticity during sleep: Hypotheses and recent data. Front. Neural Circuits 11:61
    [Google Scholar]
  92. Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ 2019. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep In press
    [Google Scholar]
  93. Rasmusson DD, Szerb JC, Jordan JL 1996. Differential effects of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-d-aspartate receptor antagonists applied to the basal forebrain on cortical acetylcholine release and electroencephalogram desynchronization. Neuroscience 72:2419–27
    [Google Scholar]
  94. Roach JP, Pidde O, Katz E, Wu J, Ognjanovski N et al. 2018. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks. PNAS 115:13E3017–25
    [Google Scholar]
  95. Rosanova M, Ulrich D. 2005. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J. Neurosci. 25:419398–405
    [Google Scholar]
  96. Saper CB, Fuller PM. 2017. Wake–sleep circuitry: an overview. Curr. Opin. Neurobiol. 44:186–92
    [Google Scholar]
  97. Schabus MD, Dang-Vu TT, Heib DPJ, Boly M, Desseilles M et al. 2012. The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Front. Neurol. 3:40
    [Google Scholar]
  98. Scholl B, Tan AY, Corey J, Priebe NJ 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:2610616–24
    [Google Scholar]
  99. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A et al. 2012. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr. Biol. 22:8676–82
    [Google Scholar]
  100. Seibt J, Richard CJ, Sigl-Glöckner J, Takahashi N, Kaplan DI et al. 2017. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat. Commun. 8:684
    [Google Scholar]
  101. Soutar CN, Rosen LG, Rodier SG, Dringenberg HC 2016. Effects of patterned sound deprivation on short and long-term plasticity in the rat thalamocortical auditory system. Neural Plast 2016:3407135
    [Google Scholar]
  102. Steriade M. 2003. The corticothalamic system in sleep. Front. Biosci. 8:d878–99
    [Google Scholar]
  103. Steriade M. 2004. Acetylcholine systems and rhythmic activities during the waking–sleep cycle. Prog. Brain Res. 145:179–96
    [Google Scholar]
  104. Steriade M. 2006. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:41087–106
    [Google Scholar]
  105. Steriade M, Deschênes M. 1988. Intrathalamic and brainstem-thalamic networks involved in resting and alert states. Cellular Thalamic Mechanisms M Bentivoglio, R Spreafico 37–62 Amsterdam: Elsevier
    [Google Scholar]
  106. Steriade M, Dossi RC, Nunez A 1991a. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 11:103200–17
    [Google Scholar]
  107. Steriade M, Dossi RC, Pare D, Oakson G 1991b. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. PNAS 88:104396–400
    [Google Scholar]
  108. Steriade M, McCarley RW. 2005. Brain Control of Wakefulness and Sleep Berlin: Springer
  109. Steriade M, McCormick DA, Sejnowski TJ 1993a. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:5134679–85
    [Google Scholar]
  110. Steriade M, Nunez A, Amzica F 1993b. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13:83252–65
    [Google Scholar]
  111. Stickgold R. 2005. Sleep-dependent memory consolidation. Nature 437:70631272–78
    [Google Scholar]
  112. Stryker MP, Zahs KR. 1983. On and off sublaminae in the lateral geniculate nucleus of the ferret. J. Neurosci. 3:101943–51
    [Google Scholar]
  113. Sun W, Tan Z, Mensh BD, Ji N 2016. Thalamus provides layer 4 of primary visual cortex with orientation-and direction-tuned inputs. Nat. Neurosci. 19:2308–15
    [Google Scholar]
  114. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA 1999. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J. Neurosci. 19:61895–911
    [Google Scholar]
  115. Timofeev I, Chauvette S. 2011. Thalamocortical oscillations: local control of EEG slow waves. Curr. Top. Med. Chem. 11:192457–71
    [Google Scholar]
  116. Timofeev I, Chauvette S. 2017. Sleep slow oscillation and plasticity. Curr. Opin. Neurobiol. 44:116–26
    [Google Scholar]
  117. Timofeev I, Grenier F, Steriade M 2001. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. PNAS 98:41924–29
    [Google Scholar]
  118. Timofeev I, Steriade M. 1996. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76:64152–68
    [Google Scholar]
  119. Tononi G, Cirelli C. 2003. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62:2143–50
    [Google Scholar]
  120. Tononi G, Cirelli C. 2006. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10:149–62
    [Google Scholar]
  121. Turrigiano GG. 1999. Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends Neurosci 22:5221–27
    [Google Scholar]
  122. Van Hooser SD. 2007. Similarity and diversity in visual cortex: Is there a unifying theory of cortical computation?. Neuroscientist 13:6639–56
    [Google Scholar]
  123. Villablanca J, Salinas-Zeballos ME. 1972. Sleep-wakefulness, EEG and behavioral studies of chronic cats without the thalamus: The “athalamic” cat. Arch. Ital. Biol. 110:3383–411
    [Google Scholar]
  124. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G 2008. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11:200–8
    [Google Scholar]
  125. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK et al. 2009. Cortical firing and sleep homeostasis. Neuron 63:6865–78
    [Google Scholar]
  126. Walker MP, Stickgold R. 2006. Sleep, memory, and plasticity. Annu. Rev. Psychol. 57:139–66
    [Google Scholar]
  127. Watson BO, Levenstein D, Greene JP, Gelinas JN, Buzsáki G 2016. Network homeostasis and state dynamics of neocortical sleep. Neuron 90:4839–52
    [Google Scholar]
  128. Watson CJ, Baghdoyan HA, Lydic R 2010. Neuropharmacology of sleep and wakefulness. Sleep Med. Clin. 5:4513–28
    [Google Scholar]
  129. Weber F, Dan Y. 2016. Circuit-based interrogation of sleep control. Nature 538:762351–59
    [Google Scholar]
  130. Wiesel TN, Hubel DH. 1963. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:61003–17
    [Google Scholar]
  131. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM 2015. Thalamic control of sensory selection in divided attention. Nature 526:7575705–9
    [Google Scholar]
  132. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB 2014. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344:61881173–78
    [Google Scholar]
  133. Zhao X, Chen H, Liu X, Cang J 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:3112751–63
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014715
Loading
/content/journals/10.1146/annurev-vision-091718-014715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error