1932

Abstract

Chimeric antigen receptor (CAR) T cell therapy has emerged as a new opportunity for cancer treatment; however, resistance can occur due to intrinsic (T cells), extrinsic (tumors), or acquired (tumors) factors. In many cases, the knowledge of these mechanisms comes from clinical observations of patients treated with CAR T cells. In addition, the structure of the CAR molecule and the manufacturing process can impact CAR T cell efficacy. Extrinsic factors such as the mutations in the tumor cell, or cells in the tumor microenvironment, can also play a role. Tumor cells may exhibit acquired antigen loss or heterogeneity that enables resistance to CAR T cell killing; additionally, myeloid cells, T regulatory cells, and fibroblasts can exert an immunosuppressive effect and abrogate CAR T cell antitumor efficacy. We will discuss these mechanisms of resistance and the novel approaches being used to overcome them to improve the widespread use of this promising cancer therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-012235
2023-04-11
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061421-012235.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-012235&mimeType=html&fmt=ahah

Literature Cited

  1. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M et al. 2020. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396:10254839–52
    [Google Scholar]
  2. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. 2018. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36:4346–51
    [Google Scholar]
  3. Arcangeli S, Falcone L, Camisa B, De Girardi F, Biondi M et al. 2020. Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients. Front. Immunol. 11:1217
    [Google Scholar]
  4. Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. 2021. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark. Res. 9:87
    [Google Scholar]
  5. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG et al. 2018. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 23:72130–41
    [Google Scholar]
  6. Bailey SR, Vatsa S, Larson RC, Bouffard AA, Scarfò I et al. 2021. Blockade or deletion of IFNγ reduces macrophage activation without compromising CAR T-cell function in hematologic malignancies. Blood Cancer Discov. 3:2136–53
    [Google Scholar]
  7. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC et al. 2014. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol. Res. 2:2112–20
    [Google Scholar]
  8. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M et al. 2021. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398:10297314–24
    [Google Scholar]
  9. Biasco L, Izotova N, Rivat C, Ghorashian S, Richardson R et al. 2021. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat. Cancer 2:6629–42
    [Google Scholar]
  10. Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R et al. 2018. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol. Immunother. 67:71053–66
    [Google Scholar]
  11. Boroughs AC, Larson RC, Choi BD, Bouffard AA, Riley LS et al. 2019. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 4:8e126194
    [Google Scholar]
  12. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:184817–28
    [Google Scholar]
  13. Brocker T, Karjalainen K. 1995. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med. 181:1653–59
    [Google Scholar]
  14. Brudno JN, Lam N, Vanasse D, Shen Y, Rose JJ et al. 2020. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26:2270–80
    [Google Scholar]
  15. Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M et al. 2018. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36:222267–80
    [Google Scholar]
  16. Cadilha BL, Benmebarek M-R, Dorman K, Oner A, Lorenzini T et al. 2021. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci. Adv. 7:24eabi5781
    [Google Scholar]
  17. Cappell KM, Kochenderfer JN. 2021. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat. Rev. Clin. Oncol. 18:11715–27
    [Google Scholar]
  18. Castella M, Caballero-Baños M, Ortiz-Maldonado V, González-Navarro EA, Suñé G et al. 2020. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front. Immunol. 11:482
    [Google Scholar]
  19. Chen DS, Mellman I. 2017. Elements of cancer immunity and the cancer-immune set point. Nature 541:7637321–30
    [Google Scholar]
  20. Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A et al. 2019a. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37:91049–58
    [Google Scholar]
  21. Choi BD, Yu X, Castano AP, Darr H, Henderson DB et al. 2019b. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7:304–12
    [Google Scholar]
  22. Dawson NAJ, Rosado-Sánchez I, Novakovsky GE, Fung VCW, Huang Q et al. 2020. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12:557eaaz3866
    [Google Scholar]
  23. De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M et al. 2018. Nanobody based dual specific CARs. Int. J. Mol. Sci. 19:2403
    [Google Scholar]
  24. Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P et al. 2020. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26:121878–87
    [Google Scholar]
  25. Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H et al. 2017. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol. Ther. 25:81946–58
    [Google Scholar]
  26. Fesnak AD. 2020. The challenge of variability in chimeric antigen receptor T cell manufacturing. Regen. Eng. Transl. Med. 6:3322–29
    [Google Scholar]
  27. Foeng J, Comerford I, McColl SR. 2022. Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Rep. Med. 3:3100543
    [Google Scholar]
  28. Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA et al. 2018. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:7709307–12
    [Google Scholar]
  29. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM et al. 2018. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24:20–28
    [Google Scholar]
  30. Gardner R, Wu D, Cherian S, Fang M, Hanafi L-A et al. 2016. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:202406–10
    [Google Scholar]
  31. Gauthier J, Gazeau N, Hirayama AV, Hill JA, Wu V et al. 2022. Imapact of CD19 CAR T-cell product type on outcomes in relapsed or refractory aggressive B-NHL. Blood 139:263722–31
    [Google Scholar]
  32. Good Z, Spiegel JY, Sahaf B, Malipatlolla MB, Ehlinger ZJ et al. 2022. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28:91860–71
    [Google Scholar]
  33. Guedan S, Posey AD, Shaw C, Wing A, Da T et al. 2018. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 31e96976
    [Google Scholar]
  34. Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T et al. 2019. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568:7750112–16
    [Google Scholar]
  35. Han L, Zhang J-S, Zhou J, Zhou K-S, Xu B-L et al. 2021. Single VHH-directed BCMA CAR-T cells cause remission of relapsed/refractory multiple myeloma. Leukemia 35:103002–6
    [Google Scholar]
  36. Hirabayashi K, Du H, Xu Y, Shou P, Zhou X et al. 2021. Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2:9904–18
    [Google Scholar]
  37. Hombach A, Hombach AA, Abken H. 2010. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther 17:101206–13
    [Google Scholar]
  38. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L et al. 2015. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3:2125–35
    [Google Scholar]
  39. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui C-H et al. 2004. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:4676–84
    [Google Scholar]
  40. Katsarou A, Sjöstrand M, Naik J, Mansilla-Soto J, Kefala D et al. 2021. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci. Transl. Med. 13:623eabh1962
    [Google Scholar]
  41. Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE et al. 2016. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:2380–90
    [Google Scholar]
  42. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ et al. 2018. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26:71855–66
    [Google Scholar]
  43. Kügler M, Stein C, Schwenkert M, Saul D, Vockentanz L et al. 2009. Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework. Protein Eng. Des. Sel. 22:3135–47
    [Google Scholar]
  44. Labanieh L, Majzner RG, Mackall CL. 2018. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2:6377–91
    [Google Scholar]
  45. Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Montero Llopis P et al. 2022. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604:7906563–70
    [Google Scholar]
  46. Larson RC, Maus MV. 2021. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21:3145–61
    [Google Scholar]
  47. Lee Y-H, Lee HJ, Kim HC, Lee Y, Nam SK et al. 2022. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells. Mol. Ther. 30:2579–92
    [Google Scholar]
  48. Lemoine J, Ruella M, Houot R 2021. Overcoming intrinsic resistance of cancer cells to CAR T-cell killing. Clin. Cancer Res. 27:236298–306
    [Google Scholar]
  49. Liu L, Bi E, Ma X, Xiong W, Qian J et al. 2020. Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9. Nat. Commun. 11:5902
    [Google Scholar]
  50. Lu Y, Hong S, Li H, Park J, Hong B et al. 2012. Th9 cells promote antitumor immune responses in vivo. J. Clin. Investig. 122:114160–71
    [Google Scholar]
  51. Majzner RG, Frank MJ, Mount C, Tousley A, Kurtz DM et al. 2020a. CD58 aberrations limit durable responses to CD19 CAR in large B cell lymphoma patients treated with axicabtagene ciloleucel but can be overcome through novel CAR engineering. Blood 136:Suppl. 153–54
    [Google Scholar]
  52. Majzner RG, Mackall CL. 2018. Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8:101219–26
    [Google Scholar]
  53. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT et al. 2020b. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10:5702–23
    [Google Scholar]
  54. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al. 2018. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378:5439–48
    [Google Scholar]
  55. Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C et al. 2022. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602:7897503–9
    [Google Scholar]
  56. Moghimi B, Muthugounder S, Jambon S, Tibbetts R, Hung L et al. 2021. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma. Nat. Commun. 12:511
    [Google Scholar]
  57. Murad JP, Tilakawardane D, Park AK, Lopez LS, Young CA et al. 2021. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective immunity. Mol. Ther. 29:72335–49
    [Google Scholar]
  58. Narayan V, Barber-Rotenberg JS, Jung I-Y, Lacey SF, Rech AJ et al. 2022. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28:4724–34
    [Google Scholar]
  59. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB et al. 2017. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377:262531–44
    [Google Scholar]
  60. Noaks E, Peticone C, Kotsopoulou E, Bracewell DG. 2021. Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing. Mol. Ther. Methods Clin. Dev. 20:675–87
    [Google Scholar]
  61. Ochi T, Maruta M, Tanimoto K, Kondo F, Yamamoto T et al. 2021. A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Commun. Biol. 4:273
    [Google Scholar]
  62. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF et al. 2012. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119:184133–41
    [Google Scholar]
  63. Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA et al. 2015. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7:303303ra139
    [Google Scholar]
  64. Powell DJ, Brennan AL, Zheng Z, Huynh H, Cotte J, Levine BL. 2009. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy 11:7923–35
    [Google Scholar]
  65. Qin L, Lai Y, Zhao R, Wei X, Weng J et al. 2017. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells. J. Hematol. Oncol. 10:68
    [Google Scholar]
  66. Quintarelli C, Orlando D, Boffa I, Guercio M, Polito VA et al. 2018. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. OncoImmunology 7:6e1433518
    [Google Scholar]
  67. Rafiq S, Hackett CS, Brentjens RJ. 2020. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17:3147–67
    [Google Scholar]
  68. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG et al. 2018. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36:9847–56
    [Google Scholar]
  69. Rosenberg SA, Restifo NP. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:623062–68
    [Google Scholar]
  70. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ et al. 2018. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24:101499–1503
    [Google Scholar]
  71. Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V et al. 2016. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128:4519–28
    [Google Scholar]
  72. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P et al. 2012. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Investig. 122:3899–910
    [Google Scholar]
  73. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ et al. 2011. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Investig. 121:51822–26
    [Google Scholar]
  74. Schirrmann T, Menzel C, Hust M, Prilop J, Jostock T, Dübel S. 2010. Oligomeric forms of single chain immunoglobulin (scIgG). mAbs 2:173–76
    [Google Scholar]
  75. Shah NN, Fry TJ. 2019. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16:372–85
    [Google Scholar]
  76. Shah NN, Highfill SL, Shalabi H, Yates B, Jin J et al. 2020a. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38:171938–50
    [Google Scholar]
  77. Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A et al. 2020b. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26:101569–75
    [Google Scholar]
  78. Shalabi H, Kraft IL, Wang H-W, Yuan CM, Yates B et al. 2018. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica 103:5e215–18
    [Google Scholar]
  79. Sheih A, Voillet V, Hanafi L-A, DeBerg HA, Yajima M et al. 2020. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11:219
    [Google Scholar]
  80. Shu R, Evtimov VJ, Hammett MV, Nguyen N-YN, Zhuang J et al. 2021. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol. Ther. Oncolytics 20:325–41
    [Google Scholar]
  81. Singh N, Frey NV, Engels B, Barrett DM, Shestova O et al. 2021. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27:5842–50
    [Google Scholar]
  82. Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE et al. 2020. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov. 10:4552–67
    [Google Scholar]
  83. Singh N, Perazzelli J, Grupp SA, Barrett DM. 2016. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8:320320ra3
    [Google Scholar]
  84. Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG et al. 2016. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:2492–500
    [Google Scholar]
  85. Song D-G, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ. 2012. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119:3696–706
    [Google Scholar]
  86. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D et al. 2015. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5:121282–95
    [Google Scholar]
  87. Spiegel JY, Patel S, Muffly L, Hossain NM, Oak J et al. 2021. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27:81419–31
    [Google Scholar]
  88. Stroncek DF, Ren J, Lee DW, Tran M, Frodigh SE et al. 2016. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy 18:7893–901
    [Google Scholar]
  89. Tauriello DVF, Sancho E, Batlle E 2022. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer 22:125–44
    [Google Scholar]
  90. Tong C, Zhang Y, Liu Y, Ji X, Zhang W et al. 2020. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B cell lymphoma. Blood 136:141632–44
    [Google Scholar]
  91. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee C-CR et al. 2013. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210:61125–35
    [Google Scholar]
  92. Turley SJ, Cremasco V, Astarita JL. 2015. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15:11669–82
    [Google Scholar]
  93. Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S et al. 2016a. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 126:62123–38
    [Google Scholar]
  94. Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B et al. 2016b. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8:355355ra116
    [Google Scholar]
  95. Upadhyay R, Boiarsky JA, Pantsulaia G, Svensson-Arvelund J, Lin MJ et al. 2021. A critical role for Fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov 11:3599–613
    [Google Scholar]
  96. van der Stegen SJC, Hamieh M, Sadelain M. 2015. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14:7499–509
    [Google Scholar]
  97. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. 2009. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284:53273–84
    [Google Scholar]
  98. Wang L-CS, Lo A, Scholler J, Sun J, Majumdar RS et al. 2014. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2:2154–66
    [Google Scholar]
  99. Wang X, Borquez-Ojeda O, Stefanski J, Du F, Qu J et al. 2021. Depletion of high-content CD14+ cells from apheresis products is critical for successful transduction and expansion of CAR T cells during large-scale cGMP manufacturing. Mol. Ther. Methods Clin. Dev. 22:377–87
    [Google Scholar]
  100. Wang Z, Li N, Feng K, Chen M, Zhang Y et al. 2021. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell. Mol. Immunol. 18:92188–98
    [Google Scholar]
  101. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE et al. 2016. Fine-tuning the CAR spacer improves T-cell potency. OncoImmunology 5:12e1253656
    [Google Scholar]
  102. Zhang H, Li F, Cao J, Wang X, Cheng H et al. 2021. A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci. Transl. Med. 13:578eaba7308
    [Google Scholar]
  103. Zhang Z, Chen X, Tian Y, Li F, Zhao X et al. 2020. Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy. J. Immunother. Cancer 8:2e001150
    [Google Scholar]
  104. Zhu I, Liu R, Garcia JM, Hyrenius-Wittsten A, Piraner DI et al. 2022. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185:81431–43.e16
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-012235
Loading
/content/journals/10.1146/annurev-cancerbio-061421-012235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error