1932

Abstract

Our understanding of cancer genomes has allowed for the integration of molecular data into histopathological classifications for routine stratification of patients. In the last 10–15 years, thanks to this systematic implementation of large-scale sequencing, the identification of hotspot somatic mutations in histone genes came into the limelight, underscoring the concept of oncohistones. As drivers in pediatric brain tumors, and in several other types of cancers, oncohistones brought a “new dimension of Strange” into the cancer multiverse, to paraphrase Marvel. An integrative approach to cancer complexity as a multidimensional projection is urgently needed to consider all relevant etiological, developmental, and evolutionary components. Here, we discuss recent progress on histone variants and chaperones, their regulation and alterations in cancers, the available in vivo models, and current treatment strategies. More specifically, we adopt a view through the lens of tissue-specific differences and means for genome expression and integrity maintenance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-021823
2024-06-12
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062722-021823.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-021823&mimeType=html&fmt=ahah

Literature Cited

  1. Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, et al. 2013.. Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. . Mol. Biol. Evol. 30:(8):185366
    [Crossref] [Google Scholar]
  2. Abdallah AS, Cardona HJ, Gadd SL, Brat DJ, Powla PP, et al. 2023.. Novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of Hoxa cluster genes and promotion of neuronal lineage. . Neurooncol. Adv. 5:(1):vdad003
    [Google Scholar]
  3. Ahmad K, Henikoff S. 2002.. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. . Mol. Cell 9:(6):1191200
    [Crossref] [Google Scholar]
  4. Ahmad K, Henikoff S. 2021.. The H3.3K27M oncohistone antagonizes reprogramming in Drosophila. . PLOS Genet. 17:(7):e1009225
    [Crossref] [Google Scholar]
  5. Arimura Y, Ikura M, Fujita R, Noda M, Kobayashi W, et al. 2018.. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. . Nucleic Acids Res. 46:(19):1000718
    [Google Scholar]
  6. Attar N, Campos OA, Vogelauer M, Cheng C, Xue Y, et al. 2020.. The histone H3-H4 tetramer is a copper reductase enzyme. . Science 369:(6499):5964
    [Crossref] [Google Scholar]
  7. Audia JE, Campbell RM. 2016.. Histone modifications and cancer. . Cold Spring Harb. Perspect. Biol. 8:(4):a019521
    [Crossref] [Google Scholar]
  8. Bagert JD, Mitchener MM, Patriotis AL, Dul BE, Wojcik F, et al. 2021.. Oncohistone mutations enhance chromatin remodeling and alter cell fates. . Nat. Chem. Biol. 17:(4):40311
    [Crossref] [Google Scholar]
  9. Bannister AJ, Kouzarides T. 2011.. Regulation of chromatin by histone modifications. . Cell Res. 21:(3):38195
    [Crossref] [Google Scholar]
  10. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, et al. 2013.. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. . Nat. Genet. 45:(12):147982
    [Crossref] [Google Scholar]
  11. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, et al. 2013.. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. . Cancer Discov. 3:(5):51219
    [Crossref] [Google Scholar]
  12. Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, et al. 2013.. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. . Cell 154:(3):54155
    [Crossref] [Google Scholar]
  13. Boileau M, Shirinian M, Gayden T, Harutyunyan AS, Chen CCL, et al. 2019.. Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. . Nat. Commun. 10::2891
    [Crossref] [Google Scholar]
  14. Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, et al. 2021.. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. . Cell Stem Cell 28:(5):87793.e9
    [Crossref] [Google Scholar]
  15. Bryant L, Li D, Cox SG, Marchione D, Joiner EF, et al. 2020.. Histone H3.3 beyond cancer: Germline mutations in histone 3 family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients. . Sci. Adv. 6:(49):eabc9207
    [Crossref] [Google Scholar]
  16. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, et al. 2016.. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. . Sci. Transl. Med. 8:(343):343re2
    [Crossref] [Google Scholar]
  17. Carraro M, Hendriks IA, Hammond CM, Solis-Mezarino V, Völker-Albert M, et al. 2023.. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network. . Mol. Cell 83:(7):107592.e9
    [Crossref] [Google Scholar]
  18. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, et al. 2015.. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. . Acta Neuropathol. 130::81527
    [Crossref] [Google Scholar]
  19. Chaouch A, Berlandi J, Chen CCL, Frey F, Badini S, et al. 2021.. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. . Mol. Cell 81:(23):487690.e7
    [Crossref] [Google Scholar]
  20. Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, et al. 2015.. The histone chaperone CAF-1 safeguards somatic cell identity. . Nature 528:(7581):21824
    [Crossref] [Google Scholar]
  21. Chen C, Bao H, Lin W, Chen X, Huang Y, et al. 2022.. ASF1b is a novel prognostic predictor associated with cell cycle signaling pathway in gastric cancer. . J. Cancer 13:(6):19852000
    [Crossref] [Google Scholar]
  22. Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, et al. 2020.. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. . Cell 183:(6):161733.e22
    [Crossref] [Google Scholar]
  23. Chen D, Chen QY, Wang Z, Zhu Y, Kluz T, et al. 2020.. Polyadenylation of histone H3.1 mRNA promotes cell transformation by displacing H3.3 from gene regulatory elements. . iScience 23:(9):101518
    [Crossref] [Google Scholar]
  24. Chew G-L, Campbell AE, De Neef E, Sutliff NA, Shadle SC, et al. 2019.. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. . Dev. Cell. 50:(5):65871.e7
    [Crossref] [Google Scholar]
  25. Chia N, Wong A, Teo K, Tan AP, Vellayappan BA, et al. 2021.. H3K27M-mutant, hemispheric diffuse glioma in an adult patient with prolonged survival. . Neuro-Oncol. Adv. 3::vdab135
    [Crossref] [Google Scholar]
  26. Chu L, Qu Y, An Y, Hou L, Li J, et al. 2022.. Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. . Cell Death Dis. 13:(2):155
    [Crossref] [Google Scholar]
  27. Corpet A, De Koning L, Toedling J, Savignoni A, Berger F, et al. 2011.. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer: specific importance of Asf1b in proliferation. . EMBO J. 30:(3):48093
    [Crossref] [Google Scholar]
  28. Delaney K, Strobino M, Wenda JM, Pankowski A, Steiner FA. 2019.. H3.3K27M-induced chromatin changes drive ectopic replication through misregulation of the JNK pathway in C. elegans. . Nat. Commun. 10::2529
    [Crossref] [Google Scholar]
  29. Delaney K, Weiss N, Almouzni G. 2023.. The cell-cycle choreography of H3 variants shapes the genome. . Mol. Cell 83:(21):377386
    [Crossref] [Google Scholar]
  30. Deng L, Xiong P, Luo Y, Bu X, Qian S, Zhong W. 2016.. Bioinformatics analysis of the molecular mechanism of diffuse intrinsic pontine glioma. . Oncol. Lett. 12:(4):252430
    [Crossref] [Google Scholar]
  31. Deshmukh S, Ptack A, Krug B, Jabado N. 2022.. Oncohistones: a roadmap to stalled development. . FEBS J. 289:(5):131528
    [Crossref] [Google Scholar]
  32. Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. 2010.. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. . Genes Dev. 24:(12):125365
    [Crossref] [Google Scholar]
  33. Drinnenberg IA, Henikoff S, Malik HS. 2016.. Evolutionary turnover of kinetochore proteins: a ship of Theseus?. Trends Cell Biol. 26:(7):498510
    [Crossref] [Google Scholar]
  34. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, et al. 2009.. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. . Cell 137:(3):48597
    [Crossref] [Google Scholar]
  35. Fang D, Gan H, Lee JH, Han J, Wang Z, et al. 2016.. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. . Science 352::134448
    [Crossref] [Google Scholar]
  36. Feng S, Ma S, Li K, Gao S, Ning S, et al. 2022.. RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity. . Nat. Commun. 13::957
    [Crossref] [Google Scholar]
  37. Fichtner A, Richter A, Filmar S, Gaisa NT, Schweyer S, et al. 2021.. The detection of isochromosome i(12p) in malignant germ cell tumours and tumours with somatic malignant transformation by the use of quantitative real-time polymerase chain reaction. . Histopathology 78:(4):593606
    [Crossref] [Google Scholar]
  38. Filipescu D, Naughtin M, Podsypanina K, Lejour V, Wilson L, et al. 2017.. Essential role for centromeric factors following p53 loss and oncogenic transformation. . Genes Dev. 31:(5):46380
    [Crossref] [Google Scholar]
  39. Fishbein L, Khare S, Wubbenhorst B, DeSloover D, D'Andrea K, et al. 2015.. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. . Nat. Commun. 6::6140
    [Crossref] [Google Scholar]
  40. Foltz DR, Jansen LET, Bailey AO, Yates JR, Bassett EA, et al. 2009.. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. . Cell 137:(3):47284
    [Crossref] [Google Scholar]
  41. Furth N, Algranati D, Dassa B, Beresh O, Fedyuk V, et al. 2022.. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. . Cell Rep. 39:(7):110836
    [Crossref] [Google Scholar]
  42. Girish V, Lakhani AA, Thompson SL, Scaduto CM, Brown LM, et al. 2023.. Oncogene-like addiction to aneuploidy in human cancers. . Science 381:(6660):eadg4521
    [Crossref] [Google Scholar]
  43. Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, et al. 2010.. Distinct factors control histone variant H3.3 localization at specific genomic regions. . Cell 140:(5):67891
    [Crossref] [Google Scholar]
  44. Gomes AP, Ilter D, Low V, Rosenzweig A, Shen Z-J, et al. 2019.. Dynamic incorporation of histone H3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization. . Cancer Cell 36:(4):40217.e13
    [Crossref] [Google Scholar]
  45. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L, et al. 2015.. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. . Nat. Med. 21:(6):55559
    [Crossref] [Google Scholar]
  46. Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J, et al. 2021.. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. . Cancer Cell 39:(3):40722.e13
    [Crossref] [Google Scholar]
  47. Haase S, Banerjee K, Mujeeb AA, Hartlage CS, Núñez FM, et al. 2022.. H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models. . J. Clin. Investig. 132:(22):e154229
    [Crossref] [Google Scholar]
  48. Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, et al. 2019.. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. . Nat. Commun. 10::1262
    [Crossref] [Google Scholar]
  49. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, et al. 2014.. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. . Nat. Med. 20:(12):139496
    [Crossref] [Google Scholar]
  50. Herz H-M, Morgan M, Gao X, Jackson J, Rickels R, et al. 2014.. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. . Science 345:(6200):106570
    [Crossref] [Google Scholar]
  51. Hoang SM, O'Sullivan RJ. 2020.. Alternative lengthening of telomeres: building bridges to connect chromosome ends. . Trends Cancer 6:(3):24760
    [Crossref] [Google Scholar]
  52. Hocher A, Laursen SP, Radford P, Tyson J, Lambert C, et al. 2023.. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. . Nat. Microbiol. 8:(11):200619
    [Crossref] [Google Scholar]
  53. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, et al. 2013.. The genomic landscape of hypodiploid acute lymphoblastic leukemia. . Nat. Genet. 45:(3):24252
    [Crossref] [Google Scholar]
  54. Hu X, Zhu H, Zhang X, He X, Xu X. 2021.. Comprehensive analysis of pan-cancer reveals potential of ASF1B as a prognostic and immunological biomarker. . Cancer Med. 10:(19):6897916
    [Crossref] [Google Scholar]
  55. Hubert CG, Lathia JD. 2021.. Identifying pediatric glioma's Achilles heel through rational combination therapies. . Am. J. Cancer Res. 11:(11):575658
    [Google Scholar]
  56. Iwase S, Xiang B, Ghosh S, Ren T, Lewis PW, et al. 2011.. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. . Nat. Struct. Mol. Biol. 18:(7):76976
    [Crossref] [Google Scholar]
  57. Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL, et al. 2019.. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. . Nat. Commun. 10::2146
    [Crossref] [Google Scholar]
  58. Jeffery D, Gatto A, Podsypanina K, Renaud-Pageot C, Ponce Landete R, et al. 2021.. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. . Commun. Biol. 4:(1):417
    [Crossref] [Google Scholar]
  59. Jenseit A, Camgöz A, Pfister SM, Kool M. 2022.. EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. . Acta Neuropathol. 143:(1):113
    [Crossref] [Google Scholar]
  60. Jenuwein T, Allis CD. 2001.. Translating the histone code. . Science 293:(5532):107480
    [Crossref] [Google Scholar]
  61. Jessa S, Mohammadnia A, Harutyunyan AS, Hulswit M, Varadharajan S, et al. 2022.. K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. . Nat. Genet. 54:(12):186580
    [Crossref] [Google Scholar]
  62. Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, et al. 2017.. Pediatric high-grade glioma: biologically and clinically in need of new thinking. . Neuro-Oncology 19:(2):15361
    [Google Scholar]
  63. Juhász S, Elbakry A, Mathes A, Löbrich M. 2018.. ATRX promotes DNA repair synthesis and sister chromatid exchange during homologous recombination. . Mol. Cell 71:(1):1124.e7
    [Crossref] [Google Scholar]
  64. Koelsche C, Schrimpf D, Tharun L, Roth E, Sturm D, et al. 2017.. Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. . Clin. Sarcoma Res. 7::9
    [Crossref] [Google Scholar]
  65. Kossel A. 1928.. The Protamines and Histones. London:: Longmans, Green
    [Google Scholar]
  66. Kujirai T, Horikoshi N, Sato K, Maehara K, Machida S, et al. 2016.. Structure and function of human histone H3.Y nucleosome. . Nucleic Acids Res. 44:(13):612741
    [Crossref] [Google Scholar]
  67. Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, et al. 2014.. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. . Mol. Cell 53:(4):63144
    [Crossref] [Google Scholar]
  68. Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, et al. 2019.. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. . Cancer Cell 35:(1):14055.e7
    [Crossref] [Google Scholar]
  69. Lehnertz B, Zhang YW, Boivin I, Mayotte N, Tomellini E, et al. 2017.. H3K27M/I mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. . Blood 130::220414
    [Crossref] [Google Scholar]
  70. Lewis PW, Elsaesser SJ, Noh K-M, Stadler SC, Allis CD. 2010.. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. . PNAS 107:(32):1407580
    [Crossref] [Google Scholar]
  71. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, et al. 2013.. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. . Science 340:(6134):85761
    [Crossref] [Google Scholar]
  72. Liu X, Song J, Zhang Y, Wang H, Sun H, et al. 2020.. ASF1B promotes cervical cancer progression through stabilization of CDK9. . Cell Death Dis. 11:(8):705
    [Crossref] [Google Scholar]
  73. Liu Y, Bisio H, Toner CM, Jeudy S, Philippe N, et al. 2021.. Virus-encoded histone doublets are essential and form nucleosome-like structures. . Cell 184:(16):423750.e19
    [Crossref] [Google Scholar]
  74. Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. 2019.. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. . Cancers 11:(5):660
    [Crossref] [Google Scholar]
  75. Lowe BR, Yadav RK, Henry RA, Schreiner P, Matsuda A, et al. 2021.. Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. . eLife 10::e65369
    [Crossref] [Google Scholar]
  76. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, et al. 2016.. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. . Science 352:(6287):84449
    [Crossref] [Google Scholar]
  77. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997.. Crystal structure of the nucleosome core particle at 2.8 Å resolution. . Nature 389:(6648):25160
    [Crossref] [Google Scholar]
  78. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, et al. 2017.. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. . Cancer Cell 32:(4):52037.e5
    [Crossref] [Google Scholar]
  79. Marzluff WF, Koreski KP. 2017.. Birth and death of histone mRNAs. . Trends Genet. 33:(10):74559
    [Crossref] [Google Scholar]
  80. Mashtalir N, Dao HT, Sankar A, Liu H, Corin AJ, et al. 2021.. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. . Science 373:(6552):30615
    [Crossref] [Google Scholar]
  81. Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, et al. 2017.. Structure of histone-based chromatin in Archaea. . Science 357:(6351):60912
    [Crossref] [Google Scholar]
  82. Mendiratta S, Gatto A, Almouzni G. 2019.. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. . J. Cell Biol. 218:(1):3954
    [Crossref] [Google Scholar]
  83. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. 2022.. Histone post-translational modifications—cause and consequence of genome function. . Nat. Rev. Genet. 23:(9):56380
    [Crossref] [Google Scholar]
  84. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Højfeldt JW, et al. 2017.. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. . Nat. Med. 23:(4):48392
    [Crossref] [Google Scholar]
  85. Morales-Valencia J, David G. 2022.. The origins of cancer cell dormancy. . Curr. Opin. Genet. Dev. 74::101914
    [Crossref] [Google Scholar]
  86. Muhire BM, Booker MA, Tolstorukov MY. 2019.. Non-neutral evolution of H3.3-encoding genes occurs without alterations in protein sequence. . Sci. Rep. 9:(1):8472
    [Crossref] [Google Scholar]
  87. Müller S, Almouzni G. 2017.. Chromatin dynamics during the cell cycle at centromeres. . Nat. Rev. Genet. 18:(3):192208
    [Crossref] [Google Scholar]
  88. Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J, et al. 2019.. The expanding landscape of “oncohistone” mutations in human cancers. . Nature 567:(7749):47378
    [Crossref] [Google Scholar]
  89. Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, et al. 2020.. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. . Cell 181:(4):80017.e22
    [Crossref] [Google Scholar]
  90. Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, et al. 2016.. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. . Nat. Commun. 7::11185
    [Crossref] [Google Scholar]
  91. Nye J, Sturgill D, Athwal R, Dalal Y. 2018.. HJURP antagonizes CENP-A mislocalization driven by the H3.3 chaperones HIRA and DAXX. . PLOS ONE 13:(10):e0205948
    [Crossref] [Google Scholar]
  92. Orillac C, Thomas C, Dastagirzada Y, Hidalgo ET, Golfinos JG, et al. 2016.. Pilocytic astrocytoma and glioneuronal tumor with histone H3 K27M mutation. . Acta Neuropathol. Commun. 4::84
    [Crossref] [Google Scholar]
  93. O'Sullivan RJ, Arnoult N, Lackner DH, Oganesian L, Haggblom C, et al. 2014.. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. . Nat. Struct. Mol. Biol. 21:(2):16774
    [Crossref] [Google Scholar]
  94. Pajtler KW, Wen J, Sill M, Lin T, Orisme W, et al. 2018.. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. . Acta Neuropathol. 136:(2):21126
    [Crossref] [Google Scholar]
  95. Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D, et al. 2017.. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. . Nat. Genet. 49::18085
    [Crossref] [Google Scholar]
  96. Park S-M, Choi E-Y, Bae M, Kim S, Park JB, et al. 2016.. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. . Nat. Commun. 7::12914
    [Crossref] [Google Scholar]
  97. Pastushenko I, Blanpain C. 2019.. EMT transition states during tumor progression and metastasis. . Trends Cell Biol. 29:(3):21226
    [Crossref] [Google Scholar]
  98. Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, et al. 2017.. H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. . Cancer Cell 32:(5):684700.e9
    [Crossref] [Google Scholar]
  99. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, et al. 2017.. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. . Nat. Med. 23:(4):493500
    [Crossref] [Google Scholar]
  100. Polo SE, Theocharis SE, Klijanienko J, Savignoni A, Asselain B, et al. 2004.. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. . Cancer Res. 64:(7):237181
    [Crossref] [Google Scholar]
  101. Postberg J, Forcob S, Chang W-J, Lipps HJ. 2010.. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms. . BMC Evol. Biol. 10::259
    [Crossref] [Google Scholar]
  102. Qi W, Zhao K, Gu J, Huang Y, Wang Y, et al. 2017.. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. . Nat. Chem. Biol. 13:(4):38188
    [Crossref] [Google Scholar]
  103. Rahman R, Janowski M, Killick-Cole CL, Singleton WGB, Campbell E, et al. 2023.. Childhood brain tumors: a review of strategies to translate CNS drug delivery to clinical trials. . Cancers 15:(3):857
    [Crossref] [Google Scholar]
  104. Rahnamoun H, Hong J, Sun Z, Lee J, Lu H, Lauberth SM. 2018.. Mutant p53 regulates enhancer-associated H3K4 monomethylation through interactions with the methyltransferase MLL4. . J. Biol. Chem. 293:(34):1323446
    [Crossref] [Google Scholar]
  105. Rajewsky N, Almouzni G, Gorski SA, Aerts S, Amit I, et al. 2020.. LifeTime and improving European healthcare through cell-based interceptive medicine. . Nature 587:(7834):37786
    [Crossref] [Google Scholar]
  106. Ray-Gallet D, Almouzni G. 2021.. The histone H3 family and its deposition pathways. . Adv. Exp. Med. Biol. 1283::1742
    [Crossref] [Google Scholar]
  107. Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, et al. 2011.. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. . Mol. Cell 44:(6):92841
    [Crossref] [Google Scholar]
  108. Renaud-Pageot C, Quivy J-P, Lochhead M, Almouzni G. 2022.. CENP-A regulation and cancer. . Front. Cell Dev. Biol. 10::907120
    [Crossref] [Google Scholar]
  109. Resnick R, Wong C-J, Hamm DC, Bennett SR, Skene PJ, et al. 2019.. DUX4-induced histone variants H3.X and H3.Y mark DUX4 target genes for expression. . Cell Rep. 29:(7):181220.e5
    [Crossref] [Google Scholar]
  110. Ricketts MD, Marmorstein R. 2017.. A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone function. . J. Mol. Biol. 429:(13):192433
    [Crossref] [Google Scholar]
  111. Rojec M, Hocher A, Stevens KM, Merkenschlager M, Warnecke T. 2019.. Chromatinization of Escherichia coli with archaeal histones. . eLife 8::e49038
    [Crossref] [Google Scholar]
  112. Rudolph J, Luger K. 2020.. The secret life of histones. . Science 369:(6499):33
    [Crossref] [Google Scholar]
  113. Sarthy JF, Meers MP, Janssens DH, Henikoff JG, Feldman H, et al. 2020.. Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. . eLife 9::e61090
    [Crossref] [Google Scholar]
  114. Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J. 2011.. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. . Chromosoma 120:(3):27585
    [Crossref] [Google Scholar]
  115. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, et al. 2012.. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. . Nature 482:(7384):22631
    [Crossref] [Google Scholar]
  116. Shiraishi K, Shindo A, Harada A, Kurumizaka H, Kimura H, et al. 2018.. Roles of histone H3.5 in human spermatogenesis and spermatogenic disorders. . Andrology 6:(1):15865
    [Crossref] [Google Scholar]
  117. Simeonova I, Almouzni G. 2019.. Dynamic histone H3 incorporation fuels metastatic progression. . Trends Mol. Med. 25:(11):93335
    [Crossref] [Google Scholar]
  118. Simeonova I, Huillard E. 2014.. In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. . Cell. Mol. Life Sci. 71:(20):400726
    [Crossref] [Google Scholar]
  119. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, et al. 2016.. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. . Brain Pathol. 26::56980
    [Crossref] [Google Scholar]
  120. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW, et al. 2012.. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. . Cancer Cell 22:(4):42537
    [Crossref] [Google Scholar]
  121. Subbiah V. 2023.. The next generation of evidence-based medicine. . Nat. Med. 29:(1):4958
    [Crossref] [Google Scholar]
  122. Suganuma T, Workman JL. 2008.. Crosstalk among histone modifications. . Cell 135:(4):6047
    [Crossref] [Google Scholar]
  123. Swartz SZ, McKay LS, Su K-C, Bury L, Padeganeh A, et al. 2019.. Quiescent cells actively replenish CENP-A nucleosomes to maintain centromere identity and proliferative potential. . Dev. Cell 51:(1):3548.e7
    [Crossref] [Google Scholar]
  124. Szenker E, Ray-Gallet D, Almouzni G. 2011.. The double face of the histone variant H3.3. . Cell Res. 21:(3):42134
    [Crossref] [Google Scholar]
  125. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. 2004.. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. . Cell 116:(1):5161
    [Crossref] [Google Scholar]
  126. Talbert PB, Armache K-J, Henikoff S. 2022.. Viral histones: pickpocket's prize or primordial progenitor?. Epigenet. Chromatin 15:(1):21
    [Crossref] [Google Scholar]
  127. Tang M, Chen Z, Wang C, Feng X, Lee N, et al. 2022.. Histone chaperone ASF1 acts with RIF1 to promote DNA end joining in BRCA1-deficient cells. . J. Biol. Chem. 298:(6):101979
    [Crossref] [Google Scholar]
  128. Thiery JP. 2002.. Epithelial-mesenchymal transitions in tumour progression. . Nat. Rev. Cancer 2:(6):44254
    [Crossref] [Google Scholar]
  129. Tiberi G, Pekowska A, Oudin C, Ivey A, Autret A, et al. 2015.. PcG methylation of the HIST1 cluster defines an epigenetic marker of acute myeloid leukemia. . Leukemia 29:(5):12026
    [Crossref] [Google Scholar]
  130. Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. 2020.. p53 directly represses human LINE1 transposons. . Genes Dev. 34:(21–22):143951
    [Crossref] [Google Scholar]
  131. Toledo RA, Qin Y, Cheng ZM, Gao Q, Iwata S, et al. 2016.. Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. . Clin. Cancer Res. 22::230110
    [Crossref] [Google Scholar]
  132. Törzsök P, Van Goubergen J, Pichler M, Pichler R, Santer FR. 2023.. Isochromosome 12p formation regulates vitamin D metabolism in testicular cancer. . Nutrients 15:(10):2384
    [Crossref] [Google Scholar]
  133. Udugama M, Hii L, Garvie A, Cervini M, Vinod B, et al. 2021.. Mutations inhibiting KDM4B drive ALT activation in ATRX-mutated glioblastomas. . Nat. Commun. 12::2584
    [Crossref] [Google Scholar]
  134. Urahama T, Harada A, Maehara K, Horikoshi N, Sato K, et al. 2016.. Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. . Epigenet. Chromatin 9::2
    [Crossref] [Google Scholar]
  135. Venneker S, Szuhai K, Hogendoorn PCW, Bovée JVMG. 2020.. Mutation-driven epigenetic alterations as a defining hallmark of central cartilaginous tumours, giant cell tumour of bone and chondroblastoma. . Virchow's Arch. 476:(1):13546
    [Crossref] [Google Scholar]
  136. Verrelle P, Meseure D, Berger F, Forest A, Leclère R, et al. 2021.. CENP-A subnuclear localization pattern as marker predicting curability by chemoradiation therapy for locally advanced head and neck cancer patients. . Cancers 13:(16):3928
    [Crossref] [Google Scholar]
  137. Voon HPJ, Udugama M, Lin W, Hii L, Law RHP, et al. 2018.. Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. . Nat. Commun. 9::3142
    [Crossref] [Google Scholar]
  138. Wang W, Xiao L, Pan D, Hu L. 2022.. ASF1B enhances migration and invasion of lung cancers cell via regulating the P53-mediated epithelial-mesenchymal transformation (EMT) signaling pathway. . Neoplasma 69:(2):36169
    [Crossref] [Google Scholar]
  139. Weinstein IB. 2002.. Addiction to oncogenes—the Achilles heal of cancer. . Science 297:(5578):6364
    [Crossref] [Google Scholar]
  140. Wiedemann SM, Mildner SN, Bönisch C, Israel L, Maiser A, et al. 2010.. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. . J. Cell Biol. 190:(5):77791
    [Crossref] [Google Scholar]
  141. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, et al. 2012.. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. . Nat. Genet. 44:(3):25153
    [Crossref] [Google Scholar]
  142. Wylie A, Jones AE, D'Brot A, Lu W-J, Kurtz P, et al. 2016.. p53 genes function to restrain mobile elements. . Genes Dev. 30:(1):6477
    [Crossref] [Google Scholar]
  143. Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, et al. 2003.. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. . PNAS 100:(19):1063540
    [Crossref] [Google Scholar]
  144. Yadav T, Quivy J-P, Almouzni G. 2018.. Chromatin plasticity: a versatile landscape that underlies cell fate and identity. . Science 361:(6409):133236
    [Crossref] [Google Scholar]
  145. Yu J-R, LeRoy G, Bready D, Frenster JD, Saldaña-Meyer R, et al. 2021.. The H3K36me2 writer-reader dependency in H3K27M-DIPG. . Sci. Adv. 7:(29):eabg7444
    [Crossref] [Google Scholar]
  146. Zhang X, Guo X, Zhuo R, Tao Y, Liang W, et al. 2022.. BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblastoma. . Biochem. Biophys. Res. Commun. 604::6369
    [Crossref] [Google Scholar]
  147. Zink L-M, Delbarre E, Eberl HC, Keilhauer EC, Bönisch C, et al. 2017.. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements. . Nucleic Acids Res. 45:(10):5691706
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-021823
Loading
/content/journals/10.1146/annurev-cancerbio-062722-021823
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error