1932

Abstract

Area V4—the focus of this review—is a mid-level processing stage along the ventral visual pathway of the macaque monkey. V4 is extensively interconnected with other visual cortical areas along the ventral and dorsal visual streams, with frontal cortical areas, and with several subcortical structures. Thus, it is well poised to play a broad and integrative role in visual perception and recognition—the functional domain of the ventral pathway. Neurophysiological studies in monkeys engaged in passive fixation and behavioral tasks suggest that V4 responses are dictated by tuning in a high-dimensional stimulus space defined by form, texture, color, depth, and other attributes of visual stimuli. This high-dimensional tuning may underlie the development of object-based representations in the visual cortex that are critical for tracking, recognizing, and interacting with objects. Neurophysiological and lesion studies also suggest that V4 responses are important for guiding perceptual decisions and higher-order behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-030320-041306
2020-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-030320-041306.html?itemId=/content/journals/10.1146/annurev-vision-030320-041306&mimeType=html&fmt=ahah

Literature Cited

  1. Adelson EH. 2001. On seeing stuff: the perception of materials by humans and machines. Proceedings of the SPIE Volume 4299: Human Vision and Electronic Imaging VI BE Rogowitz, TN Pappas 1–12 Bellingham, WA: SPIE
    [Google Scholar]
  2. Adelson EH, Bergen JR. 1991. The plenoptic function and the elements of early vision. Computational Models of Visual Processing M Landy, JA Movshon 3–20 Cambridge, MA: MIT Press
    [Google Scholar]
  3. Albrecht DG, de Valois RL, Thorell LG 1980. Visual cortical neurons: Are bars or gratings the optimal stimuli. Science 207:442688–90
    [Google Scholar]
  4. Arcizet F, Jouffrais C, Girard P 2008. Natural textures classification in area V4 of the macaque monkey. Exp. Brain Res. 189:1109–20
    [Google Scholar]
  5. Arcizet F, Jouffrais C, Girard P 2009. Coding of shape from shading in area V4 of the macaque monkey. BMC Neurosci 10:1140
    [Google Scholar]
  6. Bair W, Popovkina DV, De A, Pasupathy A 2015. Modeling shape representation in area V4 Paper presented at MODVIS Workshop St. Pete Beach, FL: May 13–15
  7. Bakin JS, Nakayama K, Gilbert CD 2000. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. J. Neurosci. 20:218188–98
    [Google Scholar]
  8. Balaban H, Drew T, Luria R 2019. Neural evidence for an object-based pointer system underlying working memory. Cortex 119:362–72
    [Google Scholar]
  9. Balas B, Nakano L, Rosenholtz R 2009. A summary-statistic representation in peripheral vision explains visual crowding. J. Vis. 9:1213
    [Google Scholar]
  10. Barbas H, Mesulam M-M. 1985. Cortical afferent input to the principals region of the rhesus monkey. Neuroscience 15:3619–37
    [Google Scholar]
  11. Bashivan P, Kar K, DiCarlo JJ 2019. Neural population control via deep image synthesis. Science 364:6439eaav9436
    [Google Scholar]
  12. Bauer R, Heinze S. 2002. Contour integration in striate cortex. Exp. Brain Res. 147:2145–52
    [Google Scholar]
  13. Bigelow AW, Kim T, Bair W, Pasupathy A 2019. Long-range apparent motion tuning in ventral visual area V4 Paper presented at Society for Neuroscience Meeting Chicago: Oct 19–23
  14. Blakemore C, Tobin EA. 1972. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp. Brain Res. 15:4439–40
    [Google Scholar]
  15. Bouma H. 1973. Visual interference in the parafoveal recognition of initial and final letters of words. Vis. Res. 13:4767–82
    [Google Scholar]
  16. Burrows BE, Moore T. 2009. Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci. 29:4815169–77
    [Google Scholar]
  17. Bushnell BN, Harding PJ, Kosai Y, Bair W, Pasupathy A 2011a. Equiluminance cells in visual cortical area v4. J. Neurosci. 31:3512398–412
    [Google Scholar]
  18. Bushnell BN, Harding PJ, Kosai Y, Pasupathy A 2011b. Partial occlusion modulates contour-based shape encoding in primate area V4. J. Neurosci. 31:114012–24
    [Google Scholar]
  19. Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T 2007. A model of V4 shape selectivity and invariance. J. Neurophysiol. 98:31733–50
    [Google Scholar]
  20. Carlson ET, Rasquinha RJ, Zhang K, Connor CE 2011. A sparse object coding scheme in area V4. Curr. Biol. 21:4288–93
    [Google Scholar]
  21. Cavanaugh JR, Bair W, Movshon JA 2002. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88:52547–56
    [Google Scholar]
  22. Chen M, Yan Y, Gong X, Gilbert CD, Liang H, Li W 2014. Incremental integration of global contours through interplay between visual cortical areas. Neuron 82:3682–94
    [Google Scholar]
  23. Clarke S, Walsh V, Schoppig A, Assal G, Cowey A 1998. Colour constancy impairments in patients with lesions of the prestriate cortex. Exp. Brain Res. 123:1–2154–58
    [Google Scholar]
  24. Coen-Cagli R, Kohn A, Schwartz O 2015. Flexible gating of contextual influences in natural vision. Nat. Neurosci. 18:111648–55
    [Google Scholar]
  25. Cohen MR, Maunsell JHR. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:121594–600
    [Google Scholar]
  26. Connor CE, Gallant JL, Preddie DC, Van Essen DC 1996. Responses in area V4 depend on the spatial relationship between stimulus and attention. J. Neurophysiol. 75:31306–8
    [Google Scholar]
  27. Conway BR, Moeller S, Tsao DY 2007. Specialized color modules in macaque extrastriate cortex. Neuron 56:3560–73
    [Google Scholar]
  28. Cooke T, Jäkel F, Wallraven C, Bülthoff HH 2007. Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45:3484–95
    [Google Scholar]
  29. Cox MA, Schmid MC, Peters AJ, Saunders RC, Leopold DA, Maier A 2013. Receptive field focus of visual area V4 neurons determines responses to illusory surfaces. PNAS 110:4217095–100
    [Google Scholar]
  30. David SV, Hayden BY, Gallant JL 2006. Spectral receptive field properties explain shape selectivity in area V4. J. Neurophysiol. 96:63492–505
    [Google Scholar]
  31. David SV, Hayden BY, Mazer JA, Gallant JL 2008. Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron 59:3509–21
    [Google Scholar]
  32. De Weerd P, Desimone R, Ungerleider LG 1996. Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Vis. Neurosci. 13:3529–38
    [Google Scholar]
  33. De Weerd P, Peralta MR, Desimone R, Ungerleider LG 1999. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2:8753–58
    [Google Scholar]
  34. DeYoe EA, Felleman DJ, Van Essen DC, McClendon E 1994. Multiple processing streams in occipitotemporal visual cortex. Nature 371:6493151–54
    [Google Scholar]
  35. El-Shamayleh Y, Pasupathy A. 2016. Contour curvature as an invariant code for objects in visual area V4. J. Neurosci. 36:205532–43
    [Google Scholar]
  36. Elder JH, Velisavljevic L. 2009. Cue dynamics underlying rapid detection of animals in natural scenes. J. Vis. 9:77
    [Google Scholar]
  37. Fang Y, Chen M, Xu H, Li P, Han C et al. 2019. An orientation map for disparity-defined edges in area V4. Cereb. Cortex 29:2666–79
    [Google Scholar]
  38. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:11–47
    [Google Scholar]
  39. Felleman DJ, Xiao Y, McClendon E 1997. Modular organization of occipito-temporal pathways: cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys. J. Neurosci. 17:93185–200
    [Google Scholar]
  40. Ferrera V, Rudolph KK, Maunsell JH 1994. Responses of neurons in the parietal and temporal visual pathways during a motion task. J. Neurosci. 14:106171–86
    [Google Scholar]
  41. Freeman J, Simoncelli EP. 2011. Metamers of the ventral stream. Nat. Neurosci. 14:91195–201
    [Google Scholar]
  42. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA 2013. A functional and perceptual signature of the second visual area in primates. Nat. Neurosci. 16:7974–81
    [Google Scholar]
  43. Fries P, Womelsdorf T, Oostenveld R, Desimone R 2008. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J. Neurosci. 28:184823–35
    [Google Scholar]
  44. Fuster JM. 1989. The Prefrontal Cortex New York: Raven Press. , 2nd ed..
  45. Fyall AM, El-Shamayleh Y, Choi H, Shea-Brown E, Pasupathy A 2017. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex. eLife 6:e25784
    [Google Scholar]
  46. Gallant JL, Braun J, Van Essen DC 1993. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259:5091100–3
    [Google Scholar]
  47. Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC 1996. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J. Neurophysiol. 76:42718–39
    [Google Scholar]
  48. Gattass R, Galkin TW, Desimone R, Ungerleider LG 2014. Subcortical connections of area V4 in the macaque. J. Comp. Neurol. 522:81941–65
    [Google Scholar]
  49. Gattass R, Gross CG, Sandell JH 1981. Visual topography of V2 in the macaque. J. Comp. Neurol. 201:4519–39
    [Google Scholar]
  50. Gattass R, Sousa A, Gross CG 1988. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8:61831–45
    [Google Scholar]
  51. Gawne TJ, Martin JM. 2002. Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. J. Neurophysiol. 88:31128–35
    [Google Scholar]
  52. Gheorghiu E, Kingdom FAA, Petkov N 2014. Contextual modulation as de-texturizer. Vis. Res. 104:12–23
    [Google Scholar]
  53. Ghose GM, Ts'O DY. 1997. Form processing modules in primate area V4. J. Neurophysiol. 77:42191–96
    [Google Scholar]
  54. Haenny PE, Maunsell JH, Schiller PH 1988. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp. Brain Res. 69:2245–59
    [Google Scholar]
  55. Haenny PE, Schiller PH. 1988. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69:2225–44
    [Google Scholar]
  56. Hanazawa A, Komatsu H. 2001. Influence of the direction of elemental luminance gradients on the responses of V4 cells to textured surfaces. J. Neurosci. 21:124490–97
    [Google Scholar]
  57. Hayden BY, Gallant JL. 2005. Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4. Neuron 47:5637–43
    [Google Scholar]
  58. Hayden BY, Gallant JL. 2013. Working memory and decision processes in visual area V4. Front. Neurosci. 7:18
    [Google Scholar]
  59. Heywood CA, Gadotti A, Cowey A 1992. Cortical area V4 and its role in the perception of color. J. Neurosci. 12:104056–65
    [Google Scholar]
  60. Hinkle DA, Connor CE. 2001. Disparity tuning in macaque area V4. Neuroreport 12:2365–69
    [Google Scholar]
  61. Hinkle DA, Connor CE. 2002. Three-dimensional orientation tuning in macaque area V4. Nat. Neurosci. 5:7665–70
    [Google Scholar]
  62. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:3574–91
    [Google Scholar]
  63. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  64. Hupé J-M, James AC, Girard P, Bullier J 2001. Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J. Neurophysiol. 85:1146–63
    [Google Scholar]
  65. Jiang R, Li M, Tang S 2019. Discrete neural clusters encode orientation, curvature and corners in macaque V4. bioRxiv 808907. https://doi.org/10.1101/808907
    [Crossref]
  66. Kahneman D, Treisman A, Gibbs BJ 1992. The reviewing of object files: object-specific integration of information. Cogn. Psychol. 24:2175–219
    [Google Scholar]
  67. Kapadia MK, Ito M, Gilbert CD, Westheimer G 1995. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:4843–56
    [Google Scholar]
  68. Kennard C, Lawden M, Morland AB, Ruddock KH 1995. Colour identification and colour constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical lesions. Proc. R. Soc. Lond. B 260:1358169–75
    [Google Scholar]
  69. Kim J-N, Shadlen MN. 1999. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2:2176–85
    [Google Scholar]
  70. Kim T, Bair W, Pasupathy A 2019a. Neural coding for shape and texture in macaque area V4. J. Neurosci. 39:244760–74
    [Google Scholar]
  71. Kim T, Bair W, Pasupathy A 2019b. Response dynamics in primate V4 are modulated by perceptual dimensions of visual textures Paper presented at Society for Neuroscience Meeting Chicago: Oct 19–23
  72. Knierim JJ, van Essen DC 1992. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67:4961–80
    [Google Scholar]
  73. Kosai Y, El-Shamayleh Y, Fyall AM, Pasupathy A 2014. The role of visual area V4 in the discrimination of partially occluded shapes. J. Neurosci. 34:258570–84
    [Google Scholar]
  74. Kusunoki M, Moutoussis K, Zeki S 2006. Effect of background colors on the tuning of color-selective cells in monkey area V4. J. Neurophysiol. 95:53047–59
    [Google Scholar]
  75. Lamme VA, Supèr H, Spekreijse H 1998. Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8:4529–35
    [Google Scholar]
  76. Levi DM. 2008. Crowding—an essential bottleneck for object recognition: a mini-review. Vis. Res. 48:5635–54
    [Google Scholar]
  77. Levitt JB, Lund JS. 1997. Contrast dependence of contextual effects in primate visual cortex. Nature 387:662873–76
    [Google Scholar]
  78. Li P, Zhu S, Chen M, Han C, Xu H et al. 2013. A motion direction preference map in monkey V4. Neuron 78:2376–88
    [Google Scholar]
  79. Liebe S, Hoerzer GM, Logothetis NK, Rainer G 2012. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat. Neurosci. 15:3456–62
    [Google Scholar]
  80. Lu Y, Yin J, Chen Z, Gong H, Liu Y et al. 2018. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron 98:2417–28.e3
    [Google Scholar]
  81. Luria R, Vogel EK. 2011. Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia 49:61632–39
    [Google Scholar]
  82. Manning TS, Britten KH. 2017. Motion processing in primates. Oxford Research Encyclopedia: Neuroscience Oxford, UK: Oxford Res. Encycl.
    [Google Scholar]
  83. Markov YA, Tiurina NA, Utochkin IS 2019. Different features are stored independently in visual working memory but mediated by object-based representations. Acta Psychol 197:52–63
    [Google Scholar]
  84. Martinez A, Ramanathan DS, Foxe JJ, Javitt DC, Hillyard SA 2007. The role of spatial attention in the selection of real and illusory objects. J. Neurosci. 27:307963–73
    [Google Scholar]
  85. Maunsell JHR. 2015. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1:373–91
    [Google Scholar]
  86. Maunsell JHR, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci 29:6317–22
    [Google Scholar]
  87. Mazer JA, Gallant JL. 2003. Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map. Neuron 40:61241–50
    [Google Scholar]
  88. Merigan WH, Pham HA. 1998. V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Vis. Neurosci. 15:359–67
    [Google Scholar]
  89. Mitchell JF, Sundberg KA, Reynolds JH 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:6879–88
    [Google Scholar]
  90. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84
    [Google Scholar]
  91. Movshon JA, Simoncelli EP. 2014. Representation of naturalistic image structure in the primate visual cortex. Cold Spring Harb. Symp. Quant. Biol. 79:115–22
    [Google Scholar]
  92. Movshon JA, Thompson ID, Tolhurst DJ 1978a. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:153–77
    [Google Scholar]
  93. Movshon JA, Thompson ID, Tolhurst DJ 1978b. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. 283:1101–20
    [Google Scholar]
  94. Nakamura H, Gattass R, Desimone R, Ungerleider L 1993. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13:93681–91
    [Google Scholar]
  95. Namima T, Yasuda M, Banno T, Okazawa G, Komatsu H 2014. Effects of luminance contrast on the color selectivity of neurons in the macaque area v4 and inferior temporal cortex. J. Neurosci. 34:4514934–47
    [Google Scholar]
  96. Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF 2013. The fine structure of shape tuning in area V4. Neuron 78:61102–15
    [Google Scholar]
  97. Nelson JI, Frost BJ. 1985. Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex. Exp. Brain Res. 61:154–61
    [Google Scholar]
  98. Neri P. 2017. Object segmentation controls image reconstruction from natural scenes. PLOS Biol 15:8e1002611
    [Google Scholar]
  99. Nielsen K. 2019. Clustering of 3D and 2D shape processing in area V4 Paper presented at Society for Neuroscience Meeting Chicago: Oct 19–23
  100. Ninomiya T, Sawamura H, Inoue K, Takada M 2012a. Multisynaptic inputs from the medial temporal lobe to V4 in macaques. PLOS ONE 7:12e52115
    [Google Scholar]
  101. Ninomiya T, Sawamura H, Inoue K, Takada M 2012b. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. J. Neurosci. 32:206851–58
    [Google Scholar]
  102. Nothdurft H-C, Gallant JL, Van Essen DC 1999. Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis. Neurosci. 16:115–34
    [Google Scholar]
  103. Nuthmann A, Henderson JM. 2010. Object-based attentional selection in scene viewing. J. Vis. 10:820
    [Google Scholar]
  104. Ogawa T, Komatsu H. 2004. Target selection in area V4 during a multidimensional visual search task. J. Neurosci. 24:286371–82
    [Google Scholar]
  105. Okazawa G, Tajima S, Komatsu H 2015. Image statistics underlying natural texture selectivity of neurons in macaque V4. PNAS 112:4E351–60
    [Google Scholar]
  106. Okazawa G, Tajima S, Komatsu H 2017. Gradual development of visual texture-selective properties between macaque areas V2 and V4. Cereb. Cortex 27:104867–80
    [Google Scholar]
  107. Oleskiw TD, Nowack A, Pasupathy A 2018. Joint coding of shape and blur in area V4. Nat. Commun. 9:1466
    [Google Scholar]
  108. Oleskiw TD, Pasupathy A, Bair W 2014. Spectral receptive fields do not explain tuning for boundary curvature in V4. J. Neurophysiol. 112:92114–22
    [Google Scholar]
  109. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:5379–91
    [Google Scholar]
  110. Pasupathy A, Connor CE. 1999. Responses to contour features in macaque area V4. J. Neurophysiol. 82:52490–502
    [Google Scholar]
  111. Pasupathy A, Connor CE. 2001. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophysiol. 86:52505–19
    [Google Scholar]
  112. Pasupathy A, Connor CE. 2002. Population coding of shape in area V4. Nat. Neurosci. 5:121332–38
    [Google Scholar]
  113. Pasupathy A, El-Shamayleh Y, Popovkina D 2018. Visual shape and object perception. Oxford Research Encyclopedia: Neuroscience SM Sherman Oxford, UK: Oxford Res. Encycl.
    [Google Scholar]
  114. Pelli DG, Tillman KA. 2008. The uncrowded window of object recognition. Nat. Neurosci. 11:101129–35
    [Google Scholar]
  115. Pettine WW, Steinmetz NA, Moore T 2019. Laminar segregation of sensory coding and behavioral readout in macaque V4. PNAS 116:2914749–54
    [Google Scholar]
  116. Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM 1998. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391:6667580–84
    [Google Scholar]
  117. Pooresmaeili A, Poort J, Roelfsema PR 2014. Simultaneous selection by object-based attention in visual and frontal cortex. PNAS 111:176467–72
    [Google Scholar]
  118. Poort J, Raudies F, Wannig A, Lamme VAF, Neumann H, Roelfsema PR 2012. The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron 75:1143–56
    [Google Scholar]
  119. Popovkina D, Bair W, Pasupathy A 2019. Modelling diverse responses to filled and outline shapes in macaque V4. J. Neurophysiol. 121:31059–77
    [Google Scholar]
  120. Popovkina DV, Pasupathy A. 2019. Task context modulates feature-selective responses in area V4. bioRxiv 594150. https://doi.org/10.1101/594150
    [Crossref]
  121. Portilla J, Simoncelli EP. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40:149–70
    [Google Scholar]
  122. Pospisil DA, Pasupathy A, Bair W 2018. “Artiphysiology” reveals V4-like shape tuning in a deep network trained for image classification. eLife 7:e38242
    [Google Scholar]
  123. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:111019–25
    [Google Scholar]
  124. Romo R, de Lafuente V 2013. Conversion of sensory signals into perceptual decisions. Prog. Neurobiol. 103:41–75
    [Google Scholar]
  125. Rosenholtz R, Huang J, Raj A, Balas BJ, Ilie L 2012. A summary statistic representation in peripheral vision explains visual search. J. Vis. 12:414
    [Google Scholar]
  126. Schaffelhofer S, Scherberger H. 2016. Object vision to hand action in macaque parietal, premotor, and motor cortices. eLife 5:e15278
    [Google Scholar]
  127. Schein SJ, Desimone R. 1990. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10:103369–89
    [Google Scholar]
  128. Schiller PH. 1993. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10:4717–46
    [Google Scholar]
  129. Schiller PH, Lee K. 1991. The role of the primate extrastriate area V4 in vision. Science 251:49981251–53
    [Google Scholar]
  130. Schut MJ, Fabius JH, Van der Stoep N, Van der Stigchel S 2017. Object files across eye movements: previous fixations affect the latencies of corrective saccades. Atten. Percept. Psychophys. 79:1138–53
    [Google Scholar]
  131. Serre T, Wolf L, Poggio T 2005. Object recognition with features inspired by visual cortex. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition994–1000 Piscataway, NJ: IEEE
    [Google Scholar]
  132. Sligte IG, Scholte HS, Lamme VAF 2009. V4 activity predicts the strength of visual short-term memory representations. J. Neurosci. 29:237432–38
    [Google Scholar]
  133. Tanigawa H, Lu HD, Roe AW 2010. Functional organization for color and orientation in macaque V4. Nat. Neurosci. 13:121542–48
    [Google Scholar]
  134. Tolias AS, Keliris GA, Smirnakis SM, Logothetis NK 2005. Reply to “Motion processing in macaque V4. .” Nat. Neurosci. 8:91125
    [Google Scholar]
  135. Treisman A, Kahneman D, Burkell J 1983. Perceptual objects and the cost of filtering. Percept. Psychophys. 33:6527–32
    [Google Scholar]
  136. Ungerleider LG, Galkin TW, Desimone R, Gattass R 2008. Cortical connections of area V4 in the macaque. Cereb. Cortex 18:3477–99
    [Google Scholar]
  137. Van Gool L, Dewaele P, Oosterlinck A 1985. Texture analysis Anno 1983. Comput. Vis. Graph. Image Process. 29:3336–57
    [Google Scholar]
  138. Victor JD, Conte MM. 2012. Local image statistics: maximum-entropy constructions and perceptual salience. J. Opt. Soc. Am. A 29:71313–45
    [Google Scholar]
  139. Wallis TS, Funke CM, Ecker AS, Gatys LA, Wichmann FA, Bethge M 2019. Image content is more important than Bouma's Law for scene metamers. eLife 8:e42512
    [Google Scholar]
  140. Walsh V. 1999. How does the cortex construct color. PNAS 96:2413594–96
    [Google Scholar]
  141. Walsh V, Carden D, Butler SR, Kulikowski JJ 1993. The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav. Brain Res. 53:1–251–62
    [Google Scholar]
  142. Watanabe M, Tanaka H, Uka T, Fujita I 2002. Disparity-selective neurons in area V4 of macaque monkeys. J. Neurophysiol. 87:41960–73
    [Google Scholar]
  143. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:238619–24
    [Google Scholar]
  144. Yu Y, Schmid AM, Victor JD 2015. Visual processing of informative multipoint correlations arises primarily in V2. eLife 4:e06604
    [Google Scholar]
  145. Zamarashkina P, Popovkina DV, Pasupathy A 2020. Stimulus and task dependence of response latencies in primate area V4. J. Neurophysiol. 17:10476
    [Google Scholar]
  146. Zeki S, Aglioti S, McKeefry D, Berlucchi G 1999. The neurological basis of conscious color perception in a blind patient. PNAS 96:2414124–29
    [Google Scholar]
  147. Zeki S, Shipp S. 1989. Modular connections between areas V2 and V4 of macaque monkey visual cortex. Eur. J. Neurosci. 1:5494–506
    [Google Scholar]
  148. Zeki SM. 1973. Colour coding in rhesus monkey prestriate cortex. Brain Res 53:422–27
    [Google Scholar]
  149. Zhou H, Friedman HS, von der Heydt R 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20:176594–611
    [Google Scholar]
  150. Ziemba CM, Freeman J, Movshon JA, Simoncelli EP 2016. Selectivity and tolerance for visual texture in macaque V2. PNAS 113:22E3140–49
    [Google Scholar]
/content/journals/10.1146/annurev-vision-030320-041306
Loading
/content/journals/10.1146/annurev-vision-030320-041306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error