1932

Abstract

An ultimate goal in retina science is to understand how the neural circuit of the retina processes natural visual scenes. Yet most studies in laboratories have long been performed with simple, artificial visual stimuli such as full-field illumination, spots of light, or gratings. The underlying assumption is that the features of the retina thus identified carry over to the more complex scenario of natural scenes. As the application of corresponding natural settings is becoming more commonplace in experimental investigations, this assumption is being put to the test and opportunities arise to discover processing features that are triggered by specific aspects of natural scenes. Here, we review how natural stimuli have been used to probe, refine, and complement knowledge accumulated under simplified stimuli, and we discuss challenges and opportunities along the way toward a comprehensive understanding of the encoding of natural scenes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100820-114239
2022-09-15
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100820-114239.html?itemId=/content/journals/10.1146/annurev-vision-100820-114239&mimeType=html&fmt=ahah

Literature Cited

  1. Abballe L, Asari H. 2022. Natural image statistics for mouse vision. PLOS ONE 17:1e0262763
    [Google Scholar]
  2. Amthor FR, Tootle JS, Gawne TJ. 2005. Retinal ganglion cell coding in simulated active vision. Vis. Neurosci. 22:6789–806
    [Google Scholar]
  3. Angueyra JM, Baudin J, Schwartz GW, Rieke F. 2022. Predicting and manipulating cone responses to naturalistic inputs. J. Neurosci. 42:71254–74
    [Google Scholar]
  4. Applebury ML, Antoch MP, Baxter LC, Chun LLY, Falk JD et al. 2000. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:3513–23
    [Google Scholar]
  5. Appleby TR, Manookin MB. 2019. Neural sensitization improves encoding fidelity in the primate retina. Nat. Commun. 10:14017
    [Google Scholar]
  6. Atick JJ, Li Z, Redlich AN. 1992. Understanding retinal color coding from first principles. Neural Comput 4:4559–72
    [Google Scholar]
  7. Atick JJ, Redlich AN. 1990. Towards a theory of early visual processing. Neural Comput 2:3308–20
    [Google Scholar]
  8. Atick JJ, Redlich AN. 1992. What does the retina know about natural scenes?. Neural Comput 4:2196–210
    [Google Scholar]
  9. Attneave F. 1954. Some informational aspects of visual perception. Psychol. Rev. 61:3183–93
    [Google Scholar]
  10. Baccus SA, Meister M. 2002. Fast and slow contrast adaptation in retinal circuitry. Neuron 36:5909–19
    [Google Scholar]
  11. Baccus SA, Ölveczky BP, Manu M, Meister M. 2008. A retinal circuit that computes object motion. J. Neurosci. 28:276807–17
    [Google Scholar]
  12. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:7586345–50
    [Google Scholar]
  13. Baden T, Schubert T, Chang L, Wei T, Zaichuk M et al. 2013. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80:51206–17
    [Google Scholar]
  14. Bae JA, Mu S, Kim JS, Turner NL, Tartavull I et al. 2018. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173:51293–306.e19
    [Google Scholar]
  15. Balasubramanian V, Sterling P. 2009. Receptive fields and functional architecture in the retina. J. Physiol. 587:122753–67
    [Google Scholar]
  16. Barlow HB. 1961. Possible principles underlying the transformations of sensory messages. Sens. Commun. 6:257–58
    [Google Scholar]
  17. Barlow HB, Fitzhugh R, Kuffler SW. 1957. Change of organization in the receptive fields of the cat's retina during dark adaptation. J. Physiol. 137:3338–54
    [Google Scholar]
  18. Barlow HB, Hill RM. 1963. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139:3553412–14
    [Google Scholar]
  19. Betsch BY, Einhäuser W, Körding KP, König P. 2004. The world from a cat's perspective—statistics of natural videos. Biol. Cybern. 90:141–50
    [Google Scholar]
  20. Bölinger D, Gollisch T. 2012. Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina. Neuron 73:2333–46
    [Google Scholar]
  21. Borghuis BG, Marvin JS, Looger LL, Demb JB. 2013. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J. Neurosci. 33:2710972–85
    [Google Scholar]
  22. Borghuis BG, Ratliff CP, Smith RG, Sterling P, Balasubramanian V. 2008. Design of a neuronal array. J. Neurosci. 28:123178–89
    [Google Scholar]
  23. Brackbill N, Rhoades C, Kling A, Shah NP, Sher A et al. 2020. Reconstruction of natural images from responses of primate retinal ganglion cells. eLife 9:e58516
    [Google Scholar]
  24. Brown SP, He S, Masland RH. 2000. Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 27:2371–83
    [Google Scholar]
  25. Brown SP, Masland RH. 2001. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat. Neurosci. 4:144–51
    [Google Scholar]
  26. Cao X, Merwine DK, Grzywacz NM. 2011. Dependence of the retinal ganglion cell's responses on local textures of natural scenes. J. Vis. 11:611
    [Google Scholar]
  27. Carcieri SM, Jacobs AL, Nirenberg S. 2003. Classification of retinal ganglion cells: a statistical approach. J. Neurophysiol. 90:31704–13
    [Google Scholar]
  28. Chichilnisky EJ. 2001. A simple white noise analysis of neuronal light responses. Netw. Comput. Neural Syst. 12:2199–213
    [Google Scholar]
  29. Chichilnisky EJ, Kalmar RS. 2002. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22:72737–47
    [Google Scholar]
  30. Clark DA, Benichou R, Meister M, Azeredo da Silveira R. 2013. Dynamical adaptation in photoreceptors. PLOS Comput. Biol. 9:11e1003289
    [Google Scholar]
  31. Dan Y, Atick JJ, Reid RC. 1996. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J. Neurosci. 16:103351–62
    [Google Scholar]
  32. Demb JB, Haarsma L, Freed MA, Sterling P. 1999. Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J. Neurosci. 19:229756–67
    [Google Scholar]
  33. Demb JB, Zaghloul K, Haarsma L, Sterling P. 2001. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21:197447–54
    [Google Scholar]
  34. Doi E, Inui T, Lee TW, Wachtler T, Sejnowski TJ. 2003. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Comput 15:2397–417
    [Google Scholar]
  35. Dunn FA, Lankheet MJ, Rieke F. 2007. Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449:7162603–6
    [Google Scholar]
  36. Endeman D, Kamermans M. 2010. Cones perform a non-linear transformation on natural stimuli. J. Physiol. 588:3435–46
    [Google Scholar]
  37. Enroth-Cugell C, Freeman AW. 1987. The receptive-field spatial structure of cat retinal Y cells. J. Physiol. 384:149–79
    [Google Scholar]
  38. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:3517–52
    [Google Scholar]
  39. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:122379–94
    [Google Scholar]
  40. Frazor RA, Geisler WS. 2006. Local luminance and contrast in natural images. Vis. Res. 46:101585–98
    [Google Scholar]
  41. Ganmor E, Segev R, Schneidman E. 2015. A thesaurus for a neural population code. eLife 4:e06134
    [Google Scholar]
  42. Garvert MM, Gollisch T. 2013. Local and global contrast adaptation in retinal ganglion cells. Neuron 77:5915–28
    [Google Scholar]
  43. Geffen MN, de Vries SEJ, Meister M. 2007. Retinal ganglion cells can rapidly change polarity from Off to On. PLOS Biol 5:3e65
    [Google Scholar]
  44. Gjorgjieva J, Sompolinsky H, Meister M. 2014. Benefits of pathway splitting in sensory coding. J. Neurosci. 34:3612127–44
    [Google Scholar]
  45. Goldin M, Lefebvre B, Virgili S, Ecker A, Mora T et al. 2021. Context-dependent selectivity to natural scenes in the retina. bioRxiv 462157v1. https://doi.org/10.1101/2021.10.01.462157
    [Crossref]
  46. Gollisch T. 2013. Features and functions of nonlinear spatial integration by retinal ganglion cells. J. Physiol. 107:5338–48
    [Google Scholar]
  47. Gouras P, Ekesten B. 2004. Why do mice have ultra-violet vision?. Exp. Eye Res. 79:6887–92
    [Google Scholar]
  48. Greschner M, Bongard M, Rujan P, Ammermüller J. 2002. Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nat. Neurosci. 5:4341–47
    [Google Scholar]
  49. Grimes WN, Schwartz GW, Rieke F. 2014. The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron 82:2460–73
    [Google Scholar]
  50. Gutierrez GJ, Rieke F, Shea-Brown ET. 2021. Nonlinear convergence boosts information coding in circuits with parallel outputs. PNAS 118:8e1921882118
    [Google Scholar]
  51. Hartline HK. 1938. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121:2400–15
    [Google Scholar]
  52. Heitman A, Brackbill N, Greschner M, Sher A, Litke AM, Chichilnisky EJ. 2016. Testing pseudo-linear models of responses to natural scenes in primate retina. bioRxiv 045336v2. https://doi.org/10.1101/045336
    [Crossref]
  53. Holmgren CD, Stahr P, Wallace DJ, Voit K, Matheson EJ et al. 2021. Visual pursuit behavior in mice maintains the pursued prey on the retinal region with least optic flow. eLife 10:e70838
    [Google Scholar]
  54. Howlett MHC, Smith RG, Kamermans M. 2017. A novel mechanism of cone photoreceptor adaptation. PLOS Biol 15:4e2001210
    [Google Scholar]
  55. Idrees S, Baumann MP, Franke F, Münch TA, Hafed ZM. 2020. Perceptual saccadic suppression starts in the retina. Nat. Commun. 11:11977
    [Google Scholar]
  56. Im M, Fried SI. 2016. Directionally selective retinal ganglion cells suppress luminance responses during natural viewing. Sci. Rep. 6:135708
    [Google Scholar]
  57. Jacoby J, Schwartz GW. 2017. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion. J. Neurosci. 37:3610–25
    [Google Scholar]
  58. Jadzinsky PD, Baccus SA. 2015. Synchronized amplification of local information transmission by peripheral retinal input. eLife 4:e09266
    [Google Scholar]
  59. Jarsky T, Cembrowski M, Logan SM, Kath WL, Riecke H et al. 2011. A synaptic mechanism for retinal adaptation to luminance and contrast. J. Neurosci. 31:3011003–15
    [Google Scholar]
  60. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod–cone opponency. Nature 532:7598236–39
    [Google Scholar]
  61. Jun NY, Field GD, Pearson J. 2021. Scene statistics and noise determine the relative arrangement of receptive field mosaics. PNAS 118:39e2105115118
    [Google Scholar]
  62. Karamanlis D, Gollisch T. 2021. Nonlinear spatial integration underlies the diversity of retinal ganglion cell responses to natural images. J. Neurosci. 41:153479–98
    [Google Scholar]
  63. Karklin Y, Simoncelli EP. 2011. Efficient coding of natural images with a population of noisy linear-nonlinear neurons. Adv. Neural Inform. Process. Syst. 24:999–1007
    [Google Scholar]
  64. Kastner DB, Baccus SA. 2011. Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nat. Neurosci. 14:101317–22
    [Google Scholar]
  65. Khani MH, Gollisch T. 2017. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells. J. Neurophysiol. 118:63024–43
    [Google Scholar]
  66. Khani MH, Gollisch T. 2021. Linear and nonlinear chromatic integration in the mouse retina. Nat. Commun. 12:11900
    [Google Scholar]
  67. Kim T, Shen N, Hsiang J-C, Johnson KP, Kerschensteiner D. 2020. Dendritic and parallel processing of visual threats in the retina control defensive responses. Sci. Adv. 6:47eabc9920
    [Google Scholar]
  68. Kim YJ, Brackbill N, Batty E, Lee J, Mitelut C et al. 2021. Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings. Neural Comput 33:71719–50
    [Google Scholar]
  69. Kling A, Gogliettino AR, Shah NP, Wu EG, Brackbill N et al. 2020. Functional organization of midget and parasol ganglion cells in the human retina. bioRxiv 240762v3. https://doi.org/10.1101/2020.08.07.240762
    [Crossref]
  70. Krishnamoorthy V, Weick M, Gollisch T. 2017. Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina. eLife 6:e22431
    [Google Scholar]
  71. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:137–68
    [Google Scholar]
  72. Kühn NK, Gollisch T. 2019. Activity correlations between direction-selective retinal ganglion cells synergistically enhance motion decoding from complex visual scenes. Neuron 101:5963–76.e7
    [Google Scholar]
  73. Land MF. 2015. Eye movements of vertebrates and their relation to eye form and function. J. Comp. Physiol. A 201:2195–214
    [Google Scholar]
  74. Lettvin J, Maturana H, McCulloch W, Pitts W. 1959. What the frog's eye tells the frog's brain. Proc. IRE 47:111940–51
    [Google Scholar]
  75. Lindsey J, Ocko SA, Ganguli S, Deny S 2019. A unified theory of early visual representations from retina to cortex through anatomically constrained deep CNNs. arXiv 1901.00945v1. https://arxiv.org/abs/1901.00945
  76. Liu JK, Karamanlis D, Gollisch T. 2022. Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration. PLOS Comput. Biol. 18:3e1009925
    [Google Scholar]
  77. Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH et al. 2017. Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization. Nat. Commun. 8:1149
    [Google Scholar]
  78. Maheswaranathan N, Kastner DB, Baccus SA, Ganguli S. 2018. Inferring hidden structure in multilayered neural circuits. PLOS Comput. Biol. 14:8e1006291
    [Google Scholar]
  79. Maheswaranathan N, McIntosh LT, Tanaka H, Grant S, Kastner DB et al. 2019. The dynamic neural code of the retina for natural scenes. bioRxiv 340943v5. https://doi.org/10.1101/340943
    [Crossref]
  80. Manookin MB, Demb JB. 2006. Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50:3453–64
    [Google Scholar]
  81. Manookin MB, Puller C, Rieke F, Neitz J, Neitz M. 2015. Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina. J. Neurophysiol. 114:31606–16
    [Google Scholar]
  82. Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M. 2005. Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8:121690–97
    [Google Scholar]
  83. Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X et al. 2017. Diverse central projection patterns of retinal ganglion cells. Cell Rep 18:82058–72
    [Google Scholar]
  84. Masland RH. 2001. Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11:4431–36
    [Google Scholar]
  85. Masquelier T, Portelli G, Kornprobst P. 2016. Microsaccades enable efficient synchrony-based coding in the retina: a simulation study. Sci. Rep. 6:124086
    [Google Scholar]
  86. Matthews HR, Murphy RLW, Fain GL, Lamb TD. 1988. Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334:617767–69
    [Google Scholar]
  87. McFarland JM, Cui Y, Butts DA. 2013. Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLOS Comput. Biol. 9:7e1003143
    [Google Scholar]
  88. McIntosh LT, Maheswaranathan N, Nayebi A, Ganguli S, Baccus SA. 2016. Deep learning models of the retinal response to natural scenes. Adv. Neural Inform. Process. Syst. 29:1369–77
    [Google Scholar]
  89. Meytlis M, Nichols Z, Nirenberg S. 2012. Determining the role of correlated firing in large populations of neurons using white noise and natural scene stimuli. Vis. Res. 70:44–53
    [Google Scholar]
  90. Młynarski WF, Hermundstad AM. 2021. Efficient and adaptive sensory codes. Nat. Neurosci. 24:7998–1009
    [Google Scholar]
  91. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:163733–53
    [Google Scholar]
  92. Münch TA, Da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:101308–16
    [Google Scholar]
  93. Nakatani K, Yau KW. 1988. Calcium and light adaptation in retinal rods and cones. Nature 334:617769–71
    [Google Scholar]
  94. Nirenberg S, Carcieri SM, Jacobs AL, Latham PE. 2001. Retinal ganglion cells act largely as independent encoders. Nature 411:6838698–701
    [Google Scholar]
  95. Nirenberg S, Pandarinath C. 2012. Retinal prosthetic strategy with the capacity to restore normal vision. PNAS 109:3715012–17
    [Google Scholar]
  96. Noda H, Adey WR. 1974. Excitability changes in cat lateral geniculate cells during saccadic eye movements. Science 183:4124543–45
    [Google Scholar]
  97. Ocko S, Lindsey J, Ganguli S, Deny S 2018. The emergence of multiple retinal cell types through efficient coding of natural movies. Adv. Neural Inform. Process. Syst. 31:9411–22
    [Google Scholar]
  98. Olmos A, Kingdom FAA. 2004. A biologically inspired algorithm for the recovery of shading and reflectance images. Perception 33:121463–73
    [Google Scholar]
  99. Ölveczky BP, Baccus SA, Meister M. 2003. Segregation of object and background motion in the retina. Nature 423:6938401–8
    [Google Scholar]
  100. Ozuysal Y, Baccus SA. 2012. Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73:51002–15
    [Google Scholar]
  101. Parthasarathy N, Batty E, Falcon W, Rutten T, Rajpal M et al. 2017. Neural networks for efficient Bayesian decoding of natural images from retinal neurons. Adv. Neural Inform. Process. Syst. 30:6434–45
    [Google Scholar]
  102. Petrusca D, Grivich MI, Sher A, Field GD, Gauthier JL et al. 2007. Identification and characterization of a Y-like primate retinal ganglion cell type. J. Neurosci. 27:4111019–27
    [Google Scholar]
  103. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM et al. 2008. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454:7207995–99
    [Google Scholar]
  104. Pitkow X, Meister M. 2012. Decorrelation and efficient coding by retinal ganglion cells. Nat. Neurosci. 15:4628–35
    [Google Scholar]
  105. Puchalla JL, Schneidman E, Harris RA, Berry MJ. 2005. Redundancy in the population code of the retina. Neuron 46:3493–504
    [Google Scholar]
  106. Qiu Y, Zhao Z, Klindt D, Kautzky M, Szatko KP et al. 2021. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. 31:153233–47.e6
    [Google Scholar]
  107. Ramón y Cajal S. 1893. La rétine des vertébrés. La Cellule 9:119–257
    [Google Scholar]
  108. Ratliff CP, Borghuis BG, Kao Y-H, Sterling P, Balasubramanian V. 2010. Retina is structured to process an excess of darkness in natural scenes. PNAS 107:4017368–73
    [Google Scholar]
  109. Ravi S, Ahn D, Greschner M, Chichilnisky EJ, Field GD. 2018. Pathway-specific asymmetries between ON and OFF visual signals. J. Neurosci. 38:459728–40
    [Google Scholar]
  110. Real E, Asari H, Gollisch T, Meister M. 2017. Neural circuit inference from function to structure. Curr. Biol. 27:2189–98
    [Google Scholar]
  111. Rieke F, Rudd ME. 2009. The challenges natural images pose for visual adaptation. Neuron 64:5605–16
    [Google Scholar]
  112. Rodieck RW. 1965. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5:12583–601
    [Google Scholar]
  113. Roska B, Werblin F. 2003. Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat. Neurosci. 6:6600–8
    [Google Scholar]
  114. Roy S, Jun NY, Davis EL, Pearson J, Field GD. 2021. Inter-mosaic coordination of retinal receptive fields. Nature 592:7854409–13
    [Google Scholar]
  115. Rust NC, Movshon JA. 2005. In praise of artifice. Nat. Neurosci. 8:121647–50
    [Google Scholar]
  116. Sabbah S, Gemmer JA, Bhatia-Lin A, Manoff G, Castro G et al. 2017. A retinal code for motion along the gravitational and body axes. Nature 546:7659492–97
    [Google Scholar]
  117. Salisbury JM, Palmer SE. 2016. Optimal prediction in the retina and natural motion statistics. J. Stat. Phys. 162:51309–23
    [Google Scholar]
  118. Schneidman E, Berry MJ II, Segev R, Bialek W. 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:70871007–12
    [Google Scholar]
  119. Schreyer HM, Gollisch T. 2021. Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 109:101692–706.e8
    [Google Scholar]
  120. Schwartz G, Rieke F. 2011. Nonlinear spatial encoding by retinal ganglion cells: When 1 + 1 ≠ 2. J. Gen. Physiol. 138:3283–90
    [Google Scholar]
  121. Schwartz G, Taylor S, Fisher C, Harris R, Berry MJ II. 2007. Synchronized firing among retinal ganglion cells signals motion reversal. Neuron 55:6958–69
    [Google Scholar]
  122. Segal IY, Giladi C, Gedalin M, Rucci M, Ben-Tov M et al. 2015. Decorrelation of retinal response to natural scenes by fixational eye movements. PNAS 112:103110–15
    [Google Scholar]
  123. Shah NP, Brackbill N, Rhoades C, Kling A, Goetz G et al. 2020. Inference of nonlinear receptive field subunits with spike-triggered clustering. eLife 9:e45743
    [Google Scholar]
  124. Sivyer B, Tomlinson A, Taylor WR. 2019. Simulated saccadic stimuli suppress ON-type direction-selective retinal ganglion cells via glycinergic inhibition. J. Neurosci. 39:224312–22
    [Google Scholar]
  125. Soto F, Hsiang J, Rajagopal R, Piggott K, Harocopos GJ et al. 2020. Efficient coding by midget and parasol ganglion cells in the human retina. Neuron 107:4656–66.e5
    [Google Scholar]
  126. Srinivasan MV, Laughlin SB, Dubs A, Series L, Sciences B. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 216:1205427–59
    [Google Scholar]
  127. Sterling P, Laughlin S. 2015. Principles of Neural Design Cambridge, MA: The MIT Press
    [Google Scholar]
  128. Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D et al. 2020. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11:13481
    [Google Scholar]
  129. Szél RP, Gaffé AR, Juliusson B, Aguirre G, Van Veen T. 1992. Unique topographic separation of two spectral classes of cones in the mouse retina. J. Comp. Neurol. 325:3327–42
    [Google Scholar]
  130. Takeshita D, Gollisch T. 2014. Nonlinear spatial integration in the receptive field surround of retinal ganglion cells. J. Neurosci. 34:227548–61
    [Google Scholar]
  131. Tanaka H, Nayebi A, Maheswaranathan N, McIntosh L, Baccus SA, Ganguli S. 2019. From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction. Adv. Neural Inform. Process. Syst. 32:8537–47
    [Google Scholar]
  132. Tkačik G, Garrigan P, Ratliff C, Milčinski G, Klein JM et al. 2011. Natural images from the birthplace of the human eye. PLOS ONE 6:6e20409
    [Google Scholar]
  133. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I et al. 2019. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:61039–55.e12
    [Google Scholar]
  134. Turner MH, Rieke F. 2016. Synaptic rectification controls nonlinear spatial integration of natural visual inputs. Neuron 90:61257–71
    [Google Scholar]
  135. Turner MH, Sanchez Giraldo LG, Schwartz O, Rieke F. 2019. Stimulus- and goal-oriented frameworks for understanding natural vision. Nat. Neurosci. 22:115–24
    [Google Scholar]
  136. Turner MH, Schwartz GW, Rieke F. 2018. Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. eLife 7:e38841
    [Google Scholar]
  137. van Hateren H. 2005. A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. J. Vis. 5:4331–47
    [Google Scholar]
  138. van Hateren JH, Rüttiger L, Sun H, Lee BB. 2002. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22:229945–60
    [Google Scholar]
  139. van Hateren JH, van der Schaaf A. 1998. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. B 265:1394359–66
    [Google Scholar]
  140. Victor JD, Shapley RM. 1979. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:6671–89
    [Google Scholar]
  141. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JND. 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:745265–69
    [Google Scholar]
  142. Wark B, Fairhall A, Rieke F. 2009. Timescales of inference in visual adaptation. Neuron 61:5750–61
    [Google Scholar]
  143. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:10747–57
    [Google Scholar]
  144. Weber AI, Pillow JW. 2017. Capturing the dynamical repertoire of single neurons with generalized linear models. Neural Comput 29:123260–89
    [Google Scholar]
  145. Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. 2020. Mouse retinal cell atlas: molecular identification of over sixty amacrine cell types. J. Neurosci. 40:275177–95
    [Google Scholar]
  146. Yedutenko M, Howlett MHC, Kamermans M. 2020. High contrast allows the retina to compute more than just contrast. Front. Cell. Neurosci. 14:595193
    [Google Scholar]
  147. Yoshimatsu T, Bartel P, Schröder C, Janiak FK, St-Pierre F et al. 2021. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Sci. Adv. 7:42eabj6815
    [Google Scholar]
  148. Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T. 2020. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107:2320–37.e6
    [Google Scholar]
  149. Yu Z, Turner MH, Baudin J, Rieke F. 2022. Adaptation in cone photoreceptors contributes to an unexpected insensitivity of primate On parasol retinal ganglion cells to spatial structure in natural images. eLife 11e70611
    [Google Scholar]
  150. Zhang Y, Kim I-J, Sanes JR, Meister M. 2012. The most numerous ganglion cell type of the mouse retina is a selective feature detector. PNAS 109:36E2391–98
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100820-114239
Loading
/content/journals/10.1146/annurev-vision-100820-114239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error