- Home
- A-Z Publications
- Annual Review of Biochemistry
- Previous Issues
- Volume 82, 2013
Annual Review of Biochemistry - Volume 82, 2013
Volume 82, 2013
-
-
Christian Raetz: Scientist and Friend Extraordinaire
Vol. 82 (2013), pp. 1–24More LessChris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the “Raetz pathway for lipid A biosynthesis.” His deep understanding of chemistry, coupled with knowledge of medicine, biochemistry, genetics, and structural biology, formed the underpinnings for his contributions to the lipid field. He displayed an intense passion for science and a broad interest that came from a strong commitment to curiosity-driven research, a commitment he imparted to his mentees and colleagues. What follows is a testament to both Chris's science and humanity from his friends and colleagues.
-
-
-
Mechanisms for Initiating Cellular DNA Replication
Vol. 82 (2013), pp. 25–54More LessThe initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
-
-
-
The Chromatin Response to DNA Breaks: Leaving a Mark on Genome Integrity
Vol. 82 (2013), pp. 55–80More LessGenetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.
-
-
-
Readout of Epigenetic Modifications
Vol. 82 (2013), pp. 81–118More LessThis review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level.
-
-
-
Flap Endonuclease 1
Vol. 82 (2013), pp. 119–138More LessFirst discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5′ flap and then cleaved off. FEN1 binds to the flap base and then threads the 5′ end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
-
-
-
New Mechanistic and Functional Insights into DNA Topoisomerases
Vol. 82 (2013), pp. 139–170More LessDNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
-
-
-
Arrest Peptides: Cis-Acting Modulators of Translation
Koreaki Ito, and Shinobu ChibaVol. 82 (2013), pp. 171–202More LessEach peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ∼40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC–exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
-
-
-
Structural Basis of the Translational Elongation Cycle*
Vol. 82 (2013), pp. 203–236More LessThe sequential addition of amino acids to a growing polypeptide chain is carried out by the ribosome in a complicated multistep process called the elongation cycle. It involves accurate selection of each aminoacyl tRNA as dictated by the mRNA codon, catalysis of peptide bond formation, and movement of the tRNAs and mRNA through the ribosome. The process requires the GTPase factors elongation factor Tu (EF-Tu) and EF-G. Not surprisingly, large conformational changes in both the ribosome and its tRNA substrates occur throughout protein elongation. Major advances in our understanding of the elongation cycle have been made in the past few years as a result of high-resolution crystal structures that capture various states of the process, as well as biochemical and computational studies.
-
-
-
CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea
Vol. 82 (2013), pp. 237–266More LessEffective clearance of an infection requires that the immune system rapidly detects and neutralizes invading parasites while strictly avoiding self-antigens that would result in autoimmunity. The cellular machinery and complex signaling pathways that coordinate an effective immune response have generally been considered properties of the eukaryotic immune system. However, a surprisingly sophisticated adaptive immune system that relies on small RNAs for sequence-specific targeting of foreign nucleic acids was recently discovered in bacteria and archaea. Molecular vaccination in prokaryotes is achieved by integrating short fragments of foreign nucleic acids into a repetitive locus in the host chromosome known as a CRISPR (clustered regularly interspaced short palindromic repeat). Here we review the mechanisms of CRISPR-mediated immunity and discuss the ecological and evolutionary implications of these adaptive defense systems.
-
-
-
Correlating Structure and Energetics in Protein-Ligand Interactions: Paradigms and Paradoxes
Vol. 82 (2013), pp. 267–293More LessPredicting protein-binding affinities of small molecules, even closely related ones, is a formidable challenge in biomolecular recognition and medicinal chemistry. A thermodynamic approach to optimizing affinity in protein-ligand interactions requires knowledge and understanding of how altering the structure of a small molecule will be manifested in protein-binding enthalpy and entropy changes; however, there is a relative paucity of such detailed information. In this review, we examine two strategies commonly used to increase ligand potency. The first of these involves introducing a cyclic constraint to preorganize a small molecule in its biologically active conformation, and the second entails adding nonpolar groups to a molecule to increase the amount of hydrophobic surface that is buried upon binding. Both of these approaches are motivated by paradigms suggesting that protein-binding entropy changes should become more favorable, but paradoxes can emerge that defy conventional wisdom.
-
-
-
Extracellular Chaperones and Proteostasis
Vol. 82 (2013), pp. 295–322More LessThere exists a family of currently untreatable, serious human diseases that arise from the inappropriate misfolding and aggregation of extracellular proteins. At present our understanding of mechanisms that operate to maintain proteostasis in extracellular body fluids is limited, but it has significantly advanced with the discovery of a small but growing family of constitutively secreted extracellular chaperones. The available evidence strongly suggests that these chaperones act as both sensors and disposal mediators of misfolded proteins in extracellular fluids, thereby normally protecting us from disease pathologies. It is critically important to further increase our understanding of the mechanisms that operate to effect extracellular proteostasis, as this is essential knowledge upon which to base the development of effective therapies for some of the world's most debilitating, costly, and intractable diseases.
-
-
-
Molecular Chaperone Functions in Protein Folding and Proteostasis
Vol. 82 (2013), pp. 323–355More LessThe biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
-
-
-
Sumoylation: A Regulatory Protein Modification in Health and Disease
Vol. 82 (2013), pp. 357–385More LessPosttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
-
-
-
Ubiquitin Ligases and Cell Cycle Control
Vol. 82 (2013), pp. 387–414More LessThe ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle–related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
-
-
-
Molecular Architecture and Assembly of the Eukaryotic Proteasome
Vol. 82 (2013), pp. 415–445More LessThe eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
-
-
-
Design of Protein Catalysts
Vol. 82 (2013), pp. 447–470More LessDiverse engineering strategies have been developed to create enzymes with novel catalytic activities. Among these, computational approaches hold particular promise. Enzymes have been computationally designed to promote several nonbiological reactions, including a Diels-Alder cycloaddition, proton transfer, multistep retroaldol transformations, and metal-dependent hydrolysis of phosphotriesters. Although their efficiencies (kcat/KM = 0.1–100 M−1 s−1) are typically low compared with those of the best natural enzymes (106–108 M−1 s−1), these catalysts are excellent starting points for laboratory evolution. This review surveys recent progress in combining computational and evolutionary approaches to enzyme design, together with insights into enzyme function gained from studies of the engineered catalysts.
-
-
-
Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis
Vol. 82 (2013), pp. 471–496More LessThe relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.
-
-
-
Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis
Vol. 82 (2013), pp. 497–530More LessIsoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway–based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.
-
-
-
Posttranslational Biosynthesis of the Protein-Derived Cofactor Tryptophan Tryptophylquinone
Vol. 82 (2013), pp. 531–550More LessMethylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-FeIV species. The amino acids of MADH that are modified are ∼40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG.
-
-
-
Mitochondrial Complex I
Vol. 82 (2013), pp. 551–575More LessComplex I (NADH:ubiquinone oxidoreductase) is crucial for respiration in many aerobic organisms. In mitochondria, it oxidizes NADH from the tricarboxylic acid cycle and β-oxidation, reduces ubiquinone, and transports protons across the inner membrane, contributing to the proton-motive force. It is also a major contributor to cellular production of reactive oxygen species. The redox reaction of complex I is catalyzed in the hydrophilic domain; it comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer along a chain of iron-sulfur clusters, and ubiquinone reduction. Redox-coupled proton translocation in the membrane domain requires long-range energy transfer through the protein complex, and the molecular mechanisms that couple the redox and proton-transfer half-reactions are currently unknown. This review evaluates extant data on the mechanisms of energy transduction and superoxide production by complex I, discusses contemporary mechanistic models, and explores how mechanistic studies may contribute to understanding the roles of complex I dysfunctions in human diseases.
-
-
-
Photosystem II: The Reaction Center of Oxygenic Photosynthesis*
Vol. 82 (2013), pp. 577–606More LessPhotosystem II (PSII) uses light energy to split water into chemical products that power the planet. The stripped protons contribute to a membrane electrochemical potential before combining with the stripped electrons to make chemical bonds and releasing O2 for powering respiratory metabolisms. In this review, we provide an overview of the kinetics and thermodynamics of water oxidation that highlights the conserved performance of PSIIs across species. We discuss recent advances in our understanding of the site of water oxidation based upon the improved (1.9-Å resolution) atomic structure of the Mn4CaO5 water-oxidizing complex (WOC) within cyanobacterial PSII. We combine these insights with recent knowledge gained from studies of the biogenesis and assembly of the WOC (called photoassembly) to arrive at a proposed chemical mechanism for water oxidation.
-
-
-
The Voltage-Gated Calcium Channel Functions as the Molecular Switch of Synaptic Transmission
Vol. 82 (2013), pp. 607–635More LessTransmitter release is a fast Ca2+-dependent process triggered in response to membrane depolarization. It involves two major calcium-binding proteins, the voltage-gated calcium channel (VGCC) and the vesicular protein synaptotagmin (syt1). Ca2+ binding triggers transmitter release with a time response of conformational changes that are too fast to be accounted for by Ca2+ binding to syt1. In contrast, conformation-triggered release, which engages Ca2+ binding to VGCC, better accounts for the fast rate of the release process. Here, we summarize findings obtained from heterologous expression systems, neuroendocrine cells, and reconstituted systems, which reveal the molecular mechanism by which Ca2+ binding to VGCC triggers exocytosis prior to Ca2+ entry into the cell. This review highlights the molecular aspects of an intramembrane signaling mechanism in which a signal is propagated from the channel transmembrane (TM) domain to the TM domain of syntaxin 1A to trigger transmitter release. It discusses fundamental problems of triggering transmitter release by syt1 and suggests a classification of docked vesicles that might explain synchronous transmitter release, spontaneous release, and facilitation of transmitter release.
-
-
-
Sphingosine-1-Phosphate and Its Receptors: Structure, Signaling, and Influence
Vol. 82 (2013), pp. 637–662More LessThe sphingosine-1-phosphate (S1P) receptor signaling system has biological and medical importance and is the first lipid G protein–coupled receptor (GPCR) structure to be solved to 2.8-Å resolution. S1P binds to five high-affinity GPCRs generating multiple downstream signals that play essential roles in vascular development and endothelial integrity, control of cardiac rhythm, and routine oral treatment of multiple sclerosis. Genetics, chemistry, and now structural biology have advanced this integrated biochemical system. The S1P receptors have a novel N-terminal fold that occludes access to the binding pocket from the extracellular environment as well as orthosteric and bitopic ligands with very different physicochemical properties. S1P receptors and metabolizing enzymes have been deleted, inducibly deleted, and knocked in as tagged or altered receptors in mice. An array of genetic models allows analysis of integrated receptor function in vivo. We can now directly understand causal relationships among protein expression, signal, and control points in physiology and pathology.
-
-
-
Membrane Fission Reactions of the Mammalian ESCRT Pathway
Vol. 82 (2013), pp. 663–692More LessThe endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
-
-
-
Signal Recognition Particle: An Essential Protein-Targeting Machine
Vol. 82 (2013), pp. 693–721More LessThe signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
-
-
-
Peroxisome Formation and Maintenance Are Dependent on the Endoplasmic Reticulum
Vol. 82 (2013), pp. 723–744More LessLooks can be deceiving. Although peroxisomes appear to be simple organelles, their formation and maintenance pose unique challenges for the cell. The birth of new peroxisomes starts at the endoplasmic reticulum (ER), which delivers lipids and membrane proteins. To form a new peroxisomal compartment, ER-derived preperoxisomal vesicles carrying different membrane proteins fuse, allowing the assembly of the peroxisomal translocon. To complete formation, peroxisomes import their soluble proteins directly from the cytosol using the newly assembled translocon. Together with the ER-derived biogenic route, peroxisomal fission and segregation subsequently maintain the cellular peroxisome population. In this review we highlight the latest insights on the life cycle of peroxisomes and show how the new cell biology concept of peroxisome formation affects our thinking about peroxisome-related diseases and their evolutionary past. The future challenge lies in the identification of all the proteins involved in this elaborate biogenic process and the dissection of their mechanism of action.
-
-
-
Systemic Amyloidoses
Vol. 82 (2013), pp. 745–774More LessThe amyloidoses are a group of protein misfolding diseases in which the precursor protein undergoes a conformational change that triggers the formation of amyloid fibrils in different tissues and organs, causing cell death and organ failure. Amyloidoses can be either localized or systemic. In localized amyloidosis, amyloid deposits form at the site of precursor protein synthesis, whereas in systemic amyloidosis, amyloid deposition occurs distant from the site of precursor protein secretion. We review the type of proteins and cells involved and what is known about the complex pathophysiology of these diseases. We focus on light chain amyloidosis to illustrate how biochemical and biophysical studies have led to a deeper understanding of the pathogenesis of this devastating disease. We also review current cellular, tissue, and animal models and discuss the challenges and opportunities for future studies of the systemic amyloidoses.
-
-
-
Nanobodies: Natural Single-Domain Antibodies
Vol. 82 (2013), pp. 775–797More LessSera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.
-
Previous Volumes
-
Volume 93 (2024)
-
Volume 92 (2023)
-
Volume 91 (2022)
-
Volume 90 (2021)
-
Volume 89 (2020)
-
Volume 88 (2019)
-
Volume 87 (2018)
-
Volume 86 (2017)
-
Volume 85 (2016)
-
Volume 84 (2015)
-
Volume 83 (2014)
-
Volume 82 (2013)
-
Volume 81 (2012)
-
Volume 80 (2011)
-
Volume 79 (2010)
-
Volume 78 (2009)
-
Volume 77 (2008)
-
Volume 76 (2007)
-
Volume 75 (2006)
-
Volume 74 (2005)
-
Volume 73 (2004)
-
Volume 72 (2003)
-
Volume 71 (2002)
-
Volume 70 (2001)
-
Volume 69 (2000)
-
Volume 68 (1999)
-
Volume 67 (1998)
-
Volume 66 (1997)
-
Volume 65 (1996)
-
Volume 64 (1995)
-
Volume 63 (1994)
-
Volume 62 (1993)
-
Volume 61 (1992)
-
Volume 60 (1991)
-
Volume 59 (1990)
-
Volume 58 (1989)
-
Volume 57 (1988)
-
Volume 56 (1987)
-
Volume 55 (1986)
-
Volume 54 (1985)
-
Volume 53 (1984)
-
Volume 52 (1983)
-
Volume 51 (1982)
-
Volume 50 (1981)
-
Volume 49 (1980)
-
Volume 48 (1979)
-
Volume 47 (1978)
-
Volume 46 (1977)
-
Volume 45 (1976)
-
Volume 44 (1975)
-
Volume 43 (1974)
-
Volume 42 (1973)
-
Volume 41 (1972)
-
Volume 40 (1971)
-
Volume 39 (1970)
-
Volume 38 (1969)
-
Volume 37 (1968)
-
Volume 36 (1967)
-
Volume 35 (1966)
-
Volume 34 (1965)
-
Volume 33 (1964)
-
Volume 32 (1963)
-
Volume 31 (1962)
-
Volume 30 (1961)
-
Volume 29 (1960)
-
Volume 28 (1959)
-
Volume 27 (1958)
-
Volume 26 (1957)
-
Volume 25 (1956)
-
Volume 24 (1955)
-
Volume 23 (1954)
-
Volume 22 (1953)
-
Volume 21 (1952)
-
Volume 20 (1951)
-
Volume 19 (1950)
-
Volume 18 (1949)
-
Volume 17 (1948)
-
Volume 16 (1947)
-
Volume 15 (1946)
-
Volume 14 (1945)
-
Volume 13 (1944)
-
Volume 12 (1943)
-
Volume 11 (1942)
-
Volume 10 (1941)
-
Volume 9 (1940)
-
Volume 8 (1939)
-
Volume 7 (1938)
-
Volume 6 (1937)
-
Volume 5 (1936)
-
Volume 4 (1935)
-
Volume 3 (1934)
-
Volume 2 (1933)
-
Volume 1 (1932)
-
Volume 0 (1932)