- Home
- A-Z Publications
- Annual Review of Plant Biology
- Issue Home
Annual Review of Plant Biology - Current Issue
Volume 75, 2024
-
-
Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments
Vol. 75 (2024), pp. 579–604More LessAmphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
-
-
-
Plant Molecular Phenology and Climate Feedbacks Mediated by BVOCs
Vol. 75 (2024), pp. 605–627More LessClimate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene–environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.
-
-
-
Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites
Vol. 75 (2024), pp. 629–653More LessPlant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry–based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.
-
-
-
Viral Recognition and Evasion in Plants
Vol. 75 (2024), pp. 655–677More LessViruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
-
-
-
Adaptation and the Geographic Spread of Crop Species
Vol. 75 (2024), pp. 679–706More LessCrops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors.
-
-
-
Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation
Vol. 75 (2024), pp. 707–736More LessBiodiversity conservation requires conserving evolutionary potential—the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
-
-
-
Physiological Responses of C4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints
Vol. 75 (2024), pp. 737–769More LessC4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change—C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought—although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
-
-
-
Deep Learning in Image-Based Plant Phenotyping
Vol. 75 (2024), pp. 771–795More LessA major bottleneck in the crop improvement pipeline is our ability to phenotype crops quickly and efficiently. Image-based, high-throughput phenotyping has a number of advantages because it is nondestructive and reduces human labor, but a new challenge arises in extracting meaningful information from large quantities of image data. Deep learning, a type of artificial intelligence, is an approach used to analyze image data and make predictions on unseen images that ultimately reduces the need for human input in computation. Here, we review the basics of deep learning, assessments of deep learning success, examples of applications of deep learning in plant phenomics, best practices, and open challenges.
-
-
-
Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures
Vol. 75 (2024), pp. 797–824More LessProgressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud–freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.
-
Previous Volumes
-
Volume 75 (2024)
-
Volume 74 (2023)
-
Volume 73 (2022)
-
Volume 72 (2021)
-
Volume 71 (2020)
-
Volume 70 (2019)
-
Volume 69 (2018)
-
Volume 68 (2017)
-
Volume 67 (2016)
-
Volume 66 (2015)
-
Volume 65 (2014)
-
Volume 64 (2013)
-
Volume 63 (2012)
-
Volume 62 (2011)
-
Volume 61 (2010)
-
Volume 60 (2009)
-
Volume 59 (2008)
-
Volume 58 (2007)
-
Volume 57 (2006)
-
Volume 56 (2005)
-
Volume 55 (2004)
-
Volume 54 (2003)
-
Volume 53 (2002)
-
Volume 52 (2001)
-
Volume 51 (2000)
-
Volume 50 (1999)
-
Volume 49 (1998)
-
Volume 48 (1997)
-
Volume 47 (1996)
-
Volume 46 (1995)
-
Volume 45 (1994)
-
Volume 44 (1993)
-
Volume 43 (1992)
-
Volume 42 (1991)
-
Volume 41 (1990)
-
Volume 40 (1989)
-
Volume 39 (1988)
-
Volume 38 (1987)
-
Volume 37 (1986)
-
Volume 36 (1985)
-
Volume 35 (1984)
-
Volume 34 (1983)
-
Volume 33 (1982)
-
Volume 32 (1981)
-
Volume 31 (1980)
-
Volume 30 (1979)
-
Volume 29 (1978)
-
Volume 28 (1977)
-
Volume 27 (1976)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1973)
-
Volume 23 (1972)
-
Volume 22 (1971)
-
Volume 21 (1970)
-
Volume 20 (1969)
-
Volume 19 (1968)
-
Volume 18 (1967)
-
Volume 17 (1966)
-
Volume 16 (1965)
-
Volume 15 (1964)
-
Volume 14 (1963)
-
Volume 13 (1962)
-
Volume 12 (1961)
-
Volume 11 (1960)
-
Volume 10 (1959)
-
Volume 9 (1958)
-
Volume 8 (1957)
-
Volume 7 (1956)
-
Volume 6 (1955)
-
Volume 5 (1954)
-
Volume 4 (1953)
-
Volume 3 (1952)
-
Volume 2 (1951)
-
Volume 1 (1950)
-
Volume 0 (1932)