- Home
- A-Z Publications
- Annual Review of Immunology
- Previous Issues
- Volume 13, 1995
Annual Review of Immunology - Volume 13, 1995
Volume 13, 1995
- Review Articles
-
-
-
Principles for Adoptive T Cell Therapy of Human Viral Diseases
Vol. 13 (1995), pp. 545–586More LessThe development of successful adoptive immunotherapy for human virus infections is predicated on an understanding of the effector cells and mechanisms essential for providing the host with a protective response to acute infection and the requirements for long-term in vivo survival of transferred cells that will be necessary to provide memory responses to persistent and latent viral infections. In this review, we discuss the results of recent studies examining the effector mechanisms mediated by virus-specific αβ+ T cells and the strategies viruses have evolved to evade recognition by such T cells and/or to interfere with the expression of T cell effector functions. The evasion strategies employed by individual viruses can render T cell subsets or T cells of particular specificities less effective in eliminating virally infected cells, and consequently they are less desirable choices for use in adoptive therapy. Insights derived from described studies of the pathogenesis and immunobiology of virus infections have resulted in the development of clinical adoptive immunotherapy studies for infections with CMV, EBV, and HIV. Although the results from such studies are preliminary, the principle that virus-specific T cells can be successfully transferred and can mediate therapeutic efficacy in humans has already been affirmed. The use of recently developed methods, such as retroviral-mediated gene transfer, to genetically modify antigen-specific T cell clones provides a novel approach to overcome limitations and improve on the safety and efficacy observed in these initial studies, suggesting that more widespread use of adoptive transfer of specific T cells as a therapeutic regimen should be feasible in the near future.
-
-
-
-
The Three-Dimensional Structure of Peptide-MHC Complexes
Vol. 13 (1995), pp. 587–622More LessThe ability of MHC molecules to present a broad spectrum of peptide antigens for T cell recognition requires a compromise between high affinity and broad specificity. Three-dimensional atomic structures of several class I and class II MHC molecules reveal a unique structural solution to this problem: Tight binding to the peptide main chain is supplemented by more or less restrictive interactions with peptide side chains. In spite of these contacts, peptide side-chain and conformational variability ensures that the resulting peptide-MHC complex presents an antigenically unique surface to T cell receptors.
Extension of this understanding to other peptide-MHC complexes, including agonist/antagonist peptides and the identification of antigenic peptides within protein sequences, however, requires a detailed analysis of the interactions that determine both peptide-MHC binding affinity and the conformations of bound peptides. While many of these interactions can be modeled by homology with known structures, their specificity can depend sensitively on subtle and long range structural effects. Structurally and immunologically important distinctions are also found between the class I and class II peptide-binding strategies. Taken together, these interactions ultimately determine the ability of an individual to respond successfully to immune challenges.
-
-
-
Potassium and Calcium Channels in Lymphocytes
Vol. 13 (1995), pp. 623–653More LessOver the past decade, a variety of ion channels have been identified and characterized in lymphocytes by use of the patch-clamp technique. This review discusses biophysical and regulatory aspects of lymphocyte potassium and calcium channels with the aim of understanding the role of these channels in lymphocyte functions. Lymphocytes express both voltage-dependent potassium [K(V)] channels and calcium-activated potassium [K(Ca)] channels, and each is upregulated as cells progress toward division following mitogenic stimulation. The genes encoding two K(V) channels, Kv1.3 (type n) and Kv3.1 (type l), have cloned. Mutational analysis is revealing functionally important regions of these channel proteins. Exogenous expression studies and the use of highly specific channel blockers have helped to establish the roles of type n K(V) channels sustaining the resting membrane potential, in regulating cell volume, and in enabling lymphocyte activation. Blockade of K(V) and K(Ca) channels effectively inhibits the antigen-driven activation of lymphocytes, probably by inducing membraned epolarization and thereby diminishing calcium influx. A prolonged rise in intracellular calcium ([ Ca2+]i) is a required signal for lymphocyte activation by antigen or mitogens. Single-cell fluorescence measurements have revealed underlying [Ca2+]i oscillations that are linked closely to the opening and closing of Ca2+ and K+ channels. Sustained Ca2+ signaling and oscillations depend absolutely on plasma-membrane Ca2+ channels that are activated by the depletion of intracellular calcium stores. Under physiological conditions these channels open as a consequence of store depletion induced by inositol 1,4,5-trisphosphate (IP3), but they can also be activated experimentally by several agents that empty the stores without generating IP3, such as the microsomal Ca2+-ATPase inhibitor thapsigargin. The intricate causal relationships among ion channels, membrane potential, [Ca2+]i, and lymphokine gene expression can now be pursued at the single-cell level with patch-clamp recording, calcium-dependent dyes, reporter genes, and fluorescence video techniques. These approaches will help to clarify the essential roles of ion channels in the molecular pathways subserving activation and other lymphocyte behaviors.
-
-
-
T Cell-Independent Antigens Type 2
Vol. 13 (1995), pp. 655–692More LessIn this review we have attemped to define the characteristics of TI-2 antigens that enable them to stimulate antibody production in the absence of T cell help. One of the most critical properties of this group of antigens is their ability to deliver prolonged and persistent signaling to the B cell. This by itself is not however sufficient to stimulate Ig synthesis, and they mus therefore stimulate non-T cells to interact with the B cells either directly or indirectly via cytokine production. There is evidence implicating the NK cell and T cell as playing this important role in response to TI antigens. Furthermore, we discuss the importance of cytokines such as IL-3, GMCSF and IFN-γ, which significantly enhance antibody production by these antigens. Finally, we present evidence demonstrating that B cell activation via TI stimuli does not play merely a permissive role in allowing for cell cycle entry and enhanced responsiveness to other stimuli. Rather, the nature of the B cell activating signal is critical in determining the quantitative and qualitative profile of Ig isotype production.
-
Previous Volumes
-
Volume 42 (2024)
-
Volume 41 (2023)
-
Volume 40 (2022)
-
Volume 39 (2021)
-
Volume 38 (2020)
-
Volume 37 (2019)
-
Volume 36 (2018)
-
Volume 35 (2017)
-
Volume 34 (2016)
-
Volume 33 (2015)
-
Volume 32 (2014)
-
Volume 31 (2013)
-
Volume 30 (2012)
-
Volume 29 (2011)
-
Volume 28 (2010)
-
Volume 27 (2009)
-
Volume 26 (2008)
-
Volume 25 (2007)
-
Volume 24 (2006)
-
Volume 23 (2005)
-
Volume 22 (2004)
-
Volume 21 (2003)
-
Volume 20 (2002)
-
Volume 19 (2001)
-
Volume 18 (2000)
-
Volume 17 (1999)
-
Volume 16 (1998)
-
Volume 15 (1997)
-
Volume 14 (1996)
-
Volume 13 (1995)
-
Volume 12 (1994)
-
Volume 11 (1993)
-
Volume 10 (1992)
-
Volume 9 (1991)
-
Volume 8 (1990)
-
Volume 7 (1989)
-
Volume 6 (1988)
-
Volume 5 (1987)
-
Volume 4 (1986)
-
Volume 3 (1985)
-
Volume 2 (1984)
-
Volume 1 (1983)
-
Volume 0 (1932)