- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 11, 2018
Annual Review of Analytical Chemistry - Volume 11, 2018
Volume 11, 2018
-
-
Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century
Vol. 11 (2018), pp. 463–484More LessBoron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing. This has resulted in the production of BDD structures with the required function and geometry for the application of interest, making BDD a truly designer material. Current research areas range from in vivo bioelectrochemistry and neuronal/retinal stimulation to improved electroanalysis, advanced oxidation processes, supercapacitors, and the development of hybrid electrochemical-spectroscopic- and temperature-based technology aimed at enhancing electrochemical performance and understanding.
-
-
-
Recent Advances in Solid-State Nuclear Magnetic Resonance Spectroscopy
Vol. 11 (2018), pp. 485–508More LessThe sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local atomic-scale environment offers great potential for the characterization of a diverse range of solid materials. Despite offering more information than its solution-state counterpart, solid-state NMR has not yet achieved a similar level of recognition, owing to the anisotropic interactions that broaden the spectral lines and hinder the extraction of structural information. Here, we describe the methods available to improve the resolution of solid-state NMR spectra and the continuing research in this area. We also highlight areas of exciting new and future development, including recent interest in combining experiment with theoretical calculations, the rise of a range of polarization transfer techniques that provide significant sensitivity enhancements, and the progress of in situ measurements. We demonstrate the detailed information available when studying dynamic and disordered solids and discuss the future applications of solid-state NMR spectroscopy across the chemical sciences.
-
-
-
Methods of Measuring Enzyme Activity Ex Vivo and In Vivo
Vol. 11 (2018), pp. 509–533More LessEnzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.
-