- Home
- A-Z Publications
- Annual Review of Biophysics
- Previous Issues
- Volume 52, 2023
Annual Review of Biophysics - Volume 52, 2023
Volume 52, 2023
-
-
Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions
Vol. 52 (2023), pp. 463–486More LessDiffusion is a pervasive process present in a broad spectrum of cellular reactions. Its mathematical description has existed for nearly two centuries and permits the construction of simple rules for evaluating the characteristic timescales of diffusive processes and some of their determinants. Although the term diffusion originally referred to random motions in three-dimensional (3D) media, several biological diffusion processes in lower dimensions have been reported. One-dimensional (1D) diffusions have been reported, for example, for translocations of various proteins along DNA or protein (e.g., microtubule) lattices and translation of helical peptides along the coiled-coil interface. Two-dimensional (2D) diffusion has been shown for dynamics of proteins along membranes. The microscopic mechanisms of these 1–3D diffusions may vary significantly depending on the nature of the diffusing molecules, the substrate, and the interactions between them. In this review, we highlight some key examples of 1–3D biomolecular diffusion processes and illustrate the roles that electrostatic interactions and intrinsic disorder may play in modulating these processes.
-
-
-
Graphene and Two-Dimensional Materials for Biomolecule Sensing
Vol. 52 (2023), pp. 487–507More LessAn ideal biosensor material at room temperature, with an extremely large surface area per unit mass combined with the possibility of harnessing quantum mechanical attributes, would be comprised of graphene and other two-dimensional (2D) materials. The sensing of a variety of sizes and types of biomolecules involves modulation of the electrical charge density of (current through) the 2D material and manifests through specific components of the capacitance (resistance). While sensitive detection at the single-molecule level, i.e., at zeptomolar concentrations, may be achieved, specificity in a complex mixture is more demanding. Attention should be paid to the influence of inevitably present defects in the 2D materials on the sensing, as well as calibration of obtained results with acceptable standards. The consequent establishment of a roadmap for the widespread deployment of 2D material–based biosensors in point-of-care platforms has the potential to revolutionize health care.
-
-
-
Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System
Vol. 52 (2023), pp. 509–524More LessThe Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
-
-
-
Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines
T. Kubař, M. Elstner, and Q. CuiVol. 52 (2023), pp. 525–551More LessHybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.
-
-
-
Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation
Vol. 52 (2023), pp. 553–572More LessThe advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
-
-
-
Bringing Structure to Cell Biology with Cryo-Electron Tomography
Vol. 52 (2023), pp. 573–595More LessRecent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure–function relationships in their native environment and becoming a tool for discovering new biology.
-
Previous Volumes
-
Volume 53 (2024)
-
Volume 52 (2023)
-
Volume 51 (2022)
-
Volume 50 (2021)
-
Volume 49 (2020)
-
Volume 48 (2019)
-
Volume 47 (2018)
-
Volume 46 (2017)
-
Volume 45 (2016)
-
Volume 44 (2015)
-
Volume 43 (2014)
-
Volume 42 (2013)
-
Volume 41 (2012)
-
Volume 40 (2011)
-
Volume 39 (2010)
-
Volume 38 (2009)
-
Volume 37 (2008)
-
Volume 36 (2007)
-
Volume 35 (2006)
-
Volume 34 (2005)
-
Volume 33 (2004)
-
Volume 32 (2003)
-
Volume 31 (2002)
-
Volume 30 (2001)
-
Volume 29 (2000)
-
Volume 28 (1999)
-
Volume 27 (1998)
-
Volume 26 (1997)
-
Volume 25 (1996)
-
Volume 24 (1995)
-
Volume 23 (1994)
-
Volume 22 (1993)
-
Volume 21 (1992)
-
Volume 20 (1991)
-
Volume 19 (1990)
-
Volume 18 (1989)
-
Volume 17 (1988)
-
Volume 16 (1987)
-
Volume 15 (1986)
-
Volume 14 (1985)
-
Volume 13 (1984)
-
Volume 12 (1983)
-
Volume 11 (1982)
-
Volume 10 (1981)
-
Volume 9 (1980)
-
Volume 8 (1979)
-
Volume 7 (1978)
-
Volume 6 (1977)
-
Volume 5 (1976)
-
Volume 4 (1975)
-
Volume 3 (1974)
-
Volume 2 (1973)
-
Volume 1 (1972)
-
Volume 0 (1932)