- Home
- A-Z Publications
- Annual Review of Entomology
- Previous Issues
- Volume 60, 2015
Annual Review of Entomology - Volume 60, 2015
Volume 60, 2015
-
-
Bionomics of Temperate and Tropical Culicoides Midges: Knowledge Gaps and Consequences for Transmission of Culicoides-Borne Viruses
Vol. 60 (2015), pp. 373–392More LessCulicoides midges are abundant hematophagous flies that vector arboviruses of veterinary and medical importance. Dramatic changes in the epidemiology of Culicoides-borne arboviruses have occurred since 1998, including the emergence of exotic viruses in northern temperate regions, increases in global disease incidence, and enhanced virus diversity in tropical zones. Drivers may include changes in climate, land use, trade, and animal husbandry. New Culicoides species and new wild reservoir hosts have been implicated in transmission, highlighting the dynamic nature of pathogen-vector-host interactions. Focusing on potential vector species worldwide and key elements of vectorial capacity, we review the sensitivity of Culicoides life cycles to abiotic and biotic factors. We consider implications for designing control measures and understanding impacts of environmental change in different ecological contexts. Critical geographical, biological, and taxonomic knowledge gaps are prioritized. Recent developments in genomics and mathematical modeling may enhance ecological understanding of these complex arbovirus systems.
-
-
-
Mirid (Hemiptera: Heteroptera) Specialists of Sticky Plants: Adaptations, Interactions, and Ecological Implications
Vol. 60 (2015), pp. 393–414More LessSticky plants—those having glandular trichomes (hairs) that produce adhesive, viscous exudates—can impede the movement of, and entrap, generalist insects. Disparate arthropod groups have adapted to these widespread and taxonomically diverse plants, yet their interactions with glandular hosts rarely are incorporated into broad ecological theory. Ecologists and entomologists might be unaware of even well-documented examples of insects that are sticky-plant specialists. The hemipteran family Miridae (more specifically, the omnivorous Dicyphini: Dicyphina) is the best-known group of arthropods that specializes on sticky plants. In the first synthesis of relationships with glandular plants for any insect family, we review mirid interactions with sticky hosts, including their adaptations (behavioral, morphological, and physiological) and mutualisms with carnivorous plants, and the ecological and agricultural implications of mirid–sticky plant systems. We propose that mirid research applies generally to tritrophic interactions on trichome-defended plants, enhances an understanding of insect-plant interactions, and provides information useful in managing crop pests.
-
-
-
Honey Bee Toxicology
Vol. 60 (2015), pp. 415–434More LessInsecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.
-
-
-
DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity
Vol. 60 (2015), pp. 435–452More LessIn eusocial insects, genetically identical individuals can exhibit striking differences in behavior and longevity. The molecular basis of such phenotypic plasticity is of great interest to the scientific community. DNA methylation, as well as other epigenetic signals, plays an important role in modulating gene expression and can therefore establish, sustain, and alter organism-level phenotypes, including behavior and life span. Unlike DNA methylation in mammals, DNA methylation in insects, including eusocial insects, is enriched in gene bodies of actively expressed genes. Recent investigations have revealed the important role of gene body methylation in regulating gene expression in response to intrinsic and environmental factors. In this review, we summarize recent advances in DNA methylation research and discuss its significance in our understanding of the epigenetic underpinnings of behavior and longevity.
-
-
-
Exaggerated Trait Growth in Insects
Vol. 60 (2015), pp. 453–472More LessAnimal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.
-
-
-
Physiology of Environmental Adaptations and Resource Acquisition in Cockroaches
Vol. 60 (2015), pp. 473–492More LessCockroaches are a group of insects that evolved early in geological time. Because of their antiquity, they for the most part display generalized behavior and physiology and accordingly have frequently been used as model insects to examine physiological and biochemical mechanisms involved with water balance, nutrition, reproduction, genetics, and insecticide resistance. As a result, a considerable amount of information on these topics is available. However, there is much more to be learned by employing new protocols, microchemical analytical techniques, and molecular biology tools to explore many unanswered questions.
-
-
-
Plant Responses to Insect Egg Deposition
Vol. 60 (2015), pp. 493–515More LessPlants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect defenses that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval performance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition. Finally, we highlight evolutionary aspects of the interactions between plants and insect eggs and ask how the herbivorous insect copes with egg-induced plant defenses and may avoid them by counteradaptations.
-
-
-
Root-Feeding Insects and Their Interactions with Organisms in the Rhizosphere
Vol. 60 (2015), pp. 517–535More LessRoot-feeding insects are an increasingly studied group of herbivores whose impacts on plant productivity and ecosystem processes are widely recognized. Their belowground habitat has hitherto hindered our understanding of how they interact with other organisms that share the rhizosphere. A surge in research in this area has now shed light on these interactions. We review key interactions between root-feeding insects and other rhizospheric organisms, including beneficial plant microbes (mycorrhizal fungi, nitrogen-fixing bacteria), antagonists/pathogens of root herbivores (arthropod predators, entomopathogenic nematodes/fungi, and bacterial pathogens), competitors, symbiotic microbes, and detritivores. Patterns for these interactions are emerging. The negative impacts of mycorrhizal fungi on root herbivores, for instance, raise the intriguing prospect that these fungi could be used for pest management. Moreover, a better understanding of symbiotic microbes in root herbivores, especially those underpinning digestion, could prove useful in industries such as biofuel production.
-
-
-
Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions
Vol. 60 (2015), pp. 537–559More LessMosquito-borne diseases, the most well known of which is malaria, are among the leading causes of human deaths worldwide. Vector control is a very important part of the global strategy for management of mosquito-associated diseases, and insecticide application is the most important component in this effort. However, mosquito-borne diseases are now resurgent, largely because of the insecticide resistance that has developed in mosquito vectors and the drug resistance of pathogens. A large number of studies have shown that multiple, complex resistance mechanisms—in particular, increased metabolic detoxification of insecticides and decreased sensitivity of the target proteins—or genes are likely responsible for insecticide resistance. Gene overexpression and amplification, and mutations in protein-coding-gene regions, have frequently been implicated as well. However, no comprehensive understanding of the resistance mechanisms or regulation involved has yet been developed. This article reviews current knowledge of the molecular mechanisms, genes, gene interactions, and gene regulation governing the development of insecticide resistance in mosquitoes and discusses the potential impact of the latest research findings on the basic and practical aspects of mosquito resistance research.
-
-
-
Vector Ecology of Equine Piroplasmosis*
Vol. 60 (2015), pp. 561–580More LessEquine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.
-
-
-
Trail Pheromones: An Integrative View of Their Role in Social Insect Colony Organization
Vol. 60 (2015), pp. 581–599More LessTrail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.
-
-
-
Sirex Woodwasp: A Model for Evolving Management Paradigms of Invasive Forest Pests
Vol. 60 (2015), pp. 601–619More LessThe Sirex woodwasp, Sirex noctilio, and its fungal mutualist, Amylostereum areolatum, together constitute one of the most damaging invasive pests of pine. Despite a century of research and well-established management programs, control remains unpredictable and spread continues to new areas. Variable success in managing this pest has been influenced by complex invasion patterns, the multilayered nature of biological interactions, the varying local ecologies, and microevolutionary population processes in both the biocontrol organisms and in the wasps. Recent research findings are challenging the historical perspectives on methods to manage the Sirex woodwasp, calling for management programs to incorporate the variable local dynamics affecting this pest complex. In this regard, the Sirex woodwasp provides a superb model to illustrate the need for a different approach to develop efficient and sustainable management tools to deal with the growing and global nature of pest invasions in forests and plantations.
-
-
-
Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems
Vol. 60 (2015), pp. 621–645More LessBiological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.
-
Previous Volumes
-
Volume 69 (2024)
-
Volume 68 (2023)
-
Volume 67 (2022)
-
Volume 66 (2021)
-
Volume 65 (2020)
-
Volume 64 (2019)
-
Volume 63 (2018)
-
Volume 62 (2017)
-
Volume 61 (2016)
-
Volume 60 (2015)
-
Volume 59 (2014)
-
Volume 58 (2013)
-
Volume 57 (2012)
-
Volume 56 (2011)
-
Volume 55 (2010)
-
Volume 54 (2009)
-
Volume 53 (2008)
-
Volume 52 (2007)
-
Volume 51 (2006)
-
Volume 50 (2005)
-
Volume 49 (2004)
-
Volume 48 (2003)
-
Volume 47 (2002)
-
Volume 46 (2001)
-
Volume 45 (2000)
-
Volume 44 (1999)
-
Volume 43 (1998)
-
Volume 42 (1997)
-
Volume 41 (1996)
-
Volume 40 (1995)
-
Volume 39 (1994)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1991)
-
Volume 35 (1990)
-
Volume 34 (1989)
-
Volume 33 (1988)
-
Volume 32 (1987)
-
Volume 31 (1986)
-
Volume 30 (1985)
-
Volume 29 (1984)
-
Volume 28 (1983)
-
Volume 27 (1982)
-
Volume 26 (1981)
-
Volume 25 (1980)
-
Volume 24 (1979)
-
Volume 23 (1978)
-
Volume 22 (1977)
-
Volume 21 (1976)
-
Volume 20 (1975)
-
Volume 19 (1974)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1971)
-
Volume 15 (1970)
-
Volume 14 (1969)
-
Volume 13 (1968)
-
Volume 12 (1967)
-
Volume 11 (1966)
-
Volume 10 (1965)
-
Volume 9 (1964)
-
Volume 8 (1963)
-
Volume 7 (1962)
-
Volume 6 (1961)
-
Volume 5 (1960)
-
Volume 4 (1959)
-
Volume 3 (1958)
-
Volume 2 (1957)
-
Volume 1 (1956)
-
Volume 0 (1932)