- Home
- A-Z Publications
- Annual Review of Immunology
- Previous Issues
- Volume 21, 2003
Annual Review of Immunology - Volume 21, 2003
Volume 21, 2003
- Review Articles
-
-
-
The Meandering 45-Year Odyssey of a Clinical Immunologist*
Vol. 21 (2003), pp. 1–27More LessMy work on basic and clinical immunology has focused on the regulation of the human immune response and how its dysregulation can lead to immunodeficiency, autoimmune, and malignant disorders. The early focus in our laboratory was on pathogenic mechanisms underlying hypogammaglobulinemia. Our demonstration of active suppression by human suppressor T cells changed thinking about the pathogenesis of certain immunodeficiency disorders. Recently we have focused on the cytokines interleukin-2 (IL-2) and IL-15, which have competitive functions in adaptive immune responses. IL-2 is necessary to destroy self-reactive lymphocytes and thus favors peripheral tolerance to self-antigens, whereas IL-15 favors the persistence of lymphocytes involved in the memory and effector responses to invading pathogens but risks the development of inflammatory autoimmune diseases. Our murine anti-Tac monoclonal antibody exploits these differences, as does a humanized form (daclizumab) now approved for the prevention of renal allograft rejection. New forms of therapy directed at IL-2 and IL-15 receptors may be effective against certain neoplastic diseases and autoimmune disorders and in the prevention of allograft rejection.
-
-
-
-
CD8 T Cell Responses to Infectious Pathogens
Vol. 21 (2003), pp. 29–70More LessCD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell–mediated immunity to viral, bacterial, and protozoal infection.
-
-
-
Control of Apoptosis in the Immune System: Bcl-2, BH3-Only Proteins and More
Vol. 21 (2003), pp. 71–105More LessApoptotic cell death plays a critical role in the development and functioning of the immune system. During differentiation, apoptosis weeds out lymphocytes lacking useful antigen receptors and those expressing dangerous ones. Lymphocyte death is also involved in limiting the magnitude and duration of immune responses to infection. In this review, we describe the role of the Bcl-2 protein family, and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain), in the control of lymphoid and myeloid cell survival. We also consider the pathogenic consequences of failure of apoptosis in the immune system.
-
-
-
CD45: A Critical Regulator of Signaling Thresholds in Immune Cells
Vol. 21 (2003), pp. 107–137More Less▪ AbstractRegulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses. This regulation is mediated by the reciprocal actions of protein tyrosine kinases and phosphatases. CD45, the first and prototypic receptor-like protein tyrosine phosphatase, is expressed on all nucleated hematopoietic cells and plays a central role in this process. Studies of CD45 mutant cell lines, CD45-deficient mice, and CD45-deficient humans initially demonstrated the essential role of CD45 in antigen receptor signal transduction and lymphocyte development. It is now known that CD45 also modulates signals emanating from integrin and cytokine receptors. Recent work has focused on regulation of CD45 expression and alternative splicing, isoform-specific differences in signal transduction, and regulation of phosphatase activity. From these studies, a model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli. Perturbation of this function may contribute to autoimmunity, immunodeficiency, and malignancy. Moreover, recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.
-
-
-
Positive and Negative Selection of T Cells
Vol. 21 (2003), pp. 139–176More LessA functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.
-
-
-
IgA Fc Receptors
Vol. 21 (2003), pp. 177–204More LessThe IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcαRI or CD89), the Fcα/μR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this reviewwe focus on the biology of FcαRI (CD89). FcαRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcαRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcαRI α chain lacks canonical signal transduction domains but can associate with the FcR γ-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcαRI expressed alone mediates endocytosis and recyling of IgA. No FcαRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcαRI has been made using human FcαRI transgenic (Tg) mice. FcαRI-Tg mice demonstrated FcαRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcαRI-Tg mice, furthermore, defined an essential role for soluble FcαRI in the development of IgA nephropathy by formation of circulating IgA-FcαRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
-
-
-
Regulatory Mechanisms that Determine the Development and Function of Plasma Cells
Vol. 21 (2003), pp. 205–230More LessPlasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
-
-
-
BAFF and APRIL: A Tutorial on B Cell Survival
Vol. 21 (2003), pp. 231–264More LessBAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
-
-
-
T Cell Dynamics in HIV-1 Infection*
Vol. 21 (2003), pp. 265–304More Less▪ AbstractIn the absence of antiretroviral treatment, HIV-1 establishes a chronic, progressive infection of the human immune system that invariably, over the course of years, leads to its destruction and fatal immunodeficiency. Paradoxically, while viral replication is extensive throughout the course of infection, deterioration of conventional measures of immunity is slow, including the characteristic loss of CD4+ T cells that is thought to play a key role in the development of immunodeficiency. This conundrum suggests that CD4+ T cell–directed viral cytopathicity alone cannot explain the course of disease. Indeed, recent advances now indicate that HIV-1 pathogenesis is likely to result from a complex interplay between the virus and the immune system, particularly the mechanisms responsible for T cell homeostasis and regeneration. We review these data and present a model of HIV-1 pathogenesis in which the protracted loss of CD4+ T cells results from early viral destruction of selected memory T cell populations, followed by a combination of profound increases in overall memory T cell turnover, damage to the thymus and other lymphoid tissues, and physiological limitations in peripheral CD4+ T cell renewal.
-
-
-
T Cell Anergy*
Vol. 21 (2003), pp. 305–334More LessT cell anergy is a tolerance mechanism in which the lymphocyte is intrinsically functionally inactivated following an antigen encounter, but remains alive for an extended period of time in a hyporesponsive state. Models of T cell anergy affecting both CD4+ and CD8+ cells fall into two broad categories. One, clonal anergy, is principally a growth arrest state, whereas the other, adaptive tolerance or in vivo anergy, represents a more generalized inhibition of proliferation and effector functions. The former arises from incomplete T cell activation, is mostly observed in previously activated T cells, is maintained by a block in the Ras/MAP kinase pathway, can be reversed by IL-2 or anti-OX40 signaling, and usually does not result in the inhibition of effector functions. The latter is most often initiated in naïve T cells in vivo by stimulation in an environment deficient in costimulation or high in coinhibition. Adaptive tolerance can be induced in the thymus or in the periphery. The cells proliferate and differentiate to varying degrees and then downregulate both functions in the face of persistent antigen. The state involves an early block in tyrosine kinase activation, which predominantly inhibits calcium mobilization, and an independent mechanism that blocks signaling through the IL-2 receptor. Adaptive tolerance reverses in the absence of antigen. Aspects of both of the anergic states are found in regulatory T cells, possibly preventing them from dominating initial immune responses to foreign antigens and shutting down such responses prematurely.
-
-
-
Toll-Like Receptors
Vol. 21 (2003), pp. 335–376More LessThe innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.
-
-
-
Poxviruses and Immune Evasion
Vol. 21 (2003), pp. 377–423More LessLarge DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
-
-
-
IL-13 Effector Functions*
Vol. 21 (2003), pp. 425–456More LessIL-13 was first recognized for its effects on B cells and monocytes, where it upregulated class II expression, promoted IgE class switching and inhibited inflammatory cytokine production. It was also thought to be functionally redundant with IL-4. However, studies conducted with knockout mice, neutralizing antibodies, and novel antagonists demonstrate that IL-13 possesses several unique effector functions that distinguish it from IL-4. Resistance to most gastrointestinal nematodes is mediated by type-2 cytokine responses, in which IL-13 plays a dominant role. By regulating cell-mediated immunity, IL-13 modulates resistance to intracellular organisms including Leishmania major, Leishmania mexicana, and Listeria monocytogenes. In the lung, IL-13 is the central mediator of allergic asthma, where it regulates eosinophilic inflammation, mucus secretion, and airway hyperresponsiveness. Manipulation of IL-13 effector function may also prove useful in the treatment of some cancers like B-cell chronic lymphocytic leukemia and Hodgkin's disease, where IL-13 modulates apoptosis or tumor cell growth. IL-13 can also inhibit tumor immunosurveillance. As such, inhibitors of IL-13 might be effective as cancer immunotherapeutics by boosting type-1-associated anti-tumor defenses. Finally, IL-13 was revealed as a potent mediator of tissue fibrosis in both schistosomiasis and asthma, which indicates that it is a key regulator of the extracellular matrix. The mechanisms that regulate IL-13 production and/or function have also been investigated, and IL-4, IL-12, IL-18, IFN-γ, IL-10, TGF-β, TNF-α, and the IL-4/IL-13 receptor complex play important roles. This review highlights the effector functions of IL-13 and describes multiple pathways for modulating its activity in vivo.
-
-
-
Location is Everything: Lipid Rafts and Immune Cell Signaling*
Vol. 21 (2003), pp. 457–481More LessThe cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling. A key organizing element for signaling receptors appears to be cholesterol- and sphingolipid-rich plasma membrane microdomains termed lipid rafts. Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to our understanding of the initiation and prolongation of signals in the immune system.
-
-
-
The Regulatory Role of Vα14 NKT Cells in Innate and Acquired Immune Response
Vol. 21 (2003), pp. 483–513More LessA novel lymphocyte lineage, Vα14 natural killer T (NKT) cells, is now well established as distinct from conventional αβ T cells. Vα14 NKT cells express a single invariant Vα14 antigen receptor that is essential for their development. Successful identification of a specific ligand, α-galactosylceramide(α-GalCer), and the establishment of gene-manipulated mice with selective loss of Vα14 NKT cells helped elucidate the remarkable functional diversity of Vα14 NKT cells in various immune responses such as host defense by mediating anti-nonself innate immune reaction, homeostatic regulation of anti-self responses, and antitumor immunity.
-
-
-
On Natural and Artificial Vaccinations
Vol. 21 (2003), pp. 515–546More LessThis review summarizes the general parameters of cell- and antibody-mediated immune protection and the basic mechanisms responsible for what we call immunological memory. From this basis, the various successes and difficulties of vaccines are evaluated with respect to the role of antigen in maintaining protective immunity. Based on the fact that in humans during the first 12–48 months maternal antibodies from milk and serum protect against classical acute childhood and other infections, the concept is developed that maternal antibodies attenuate most infections of babies and infants and turn them into effective vaccines. If this “natural vaccination” under passive protective conditions does not occur, acute childhood diseases may be severe, unless infants are actively vaccinated with conventional vaccines early enough, i.e., in synchronization with the immune system's maturation. Although vaccines are available against the classical childhood diseases, they are not available for many seemingly milder childhood infections such as gastrointestinal and respiratory infections; these may eventually trigger immunopathological diseases. These changing balances between humans and infections caused by changes in nursing habits but also in hygiene levels may well be involved in changing disease patterns including increased frequencies of certain autoimmune and degenerative diseases.
-
-
-
Collectins and Ficolins: Humoral Lectins of the Innate Immune Defense
Vol. 21 (2003), pp. 547–578More LessCollectins and ficolins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune systems, which recognize pathogen-associated molecular patterns. The human collectins, mannan-binding lectin (MBL) and surfactant protein A and D (SP-A and SP-D), are oligomeric proteins composed of carbohydrate-recognition domains (CRDs) attached to collagenous regions and are thus structurally similar to the ficolins, L-ficolin, M-ficolin, and H-ficolin. However, they make use of different CRD structures: C-type lectin domains for the collectins and fibrinogen-like domains for the ficolins. Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination. This limits the infection and concurrently orchestrates the subsequent adaptive immune response. Deficiencies of the proteins may predispose to infections or other complications, e.g., reperfusion injuries or autoimmune diseases. Structure, function, clinical implications, and phylogeny are reviewed.
-
-
-
The Biology of IgE and the Basis of Allergic Disease
Vol. 21 (2003), pp. 579–628More LessAllergic individuals exposed to minute quantities of allergen experience an immediate response. Immediate hypersensitivity reflects the permanent sensitization of mucosal mast cells by allergen-specific IgE antibodies bound to their high-affinity receptors (FcϵRI). A combination of factors contributes to such long-lasting sensitization of the mast cells. They include the homing of mast cells to mucosal tissues, the local synthesis of IgE, the induction of FcϵRI expression on mast cells by IgE, the consequent downregulation of FcγR (through an insufficiency of the common γ-chains), and the exceptionally slow dissociation of IgE from FcϵRI. To understand the mechanism of the immediate hypersensitivity phenomenon, we need explanations of why IgE antibodies are synthesized in preference to IgG in mucosal tissues and why the IgE is so tenaciously retained on mast cell–surface receptors. There is now compelling evidence that the microenvironment of mucosal tissues of allergic disease favors class switching to IgE; and the exceptionally high affinity of IgE for FcϵRI can now be interpreted in terms of the recently determined crystal structures of IgE-FcϵRI and IgG-FcγR complexes. The rate of local IgE synthesis can easily compensate for the rate of the antibody dissociation from its receptors on mucosal mast cells. Effective mechanisms ensure that allergic reactions are confined to mucosal tissues, thereby minimizing the risk of systemic anaphylaxis.
-
-
-
Genomic Organization of the Mammalian Mhc
Vol. 21 (2003), pp. 629–657More LessThe Human Genome Project transformed the quest of more than 50 years to understand the major histocompatibility complex (Mhc). The sequence of the Mhc from human and mouse, together with a large amount of sequence and mapping information from several other species, allows us to draw general conclusions about the organization and origin of this crucial part of the immune system. The Mhc is a mosaic of stretches formed by conserved and nonconserved genes. Surprisingly, of the ∼3.6-Mb Mhc, the stretches that encode the class I and class II genes, which epitomize the Mhc, are the least conserved part, whereas the ∼1.7-Mb stretches that encode at least 115 other genes are highly conserved. We summarize the available data to answer the questions (a) What is the Mhc? and (b) How can we define it in a general, not species-specific, way? Knowing what is essential and what is incidental helps us understand the fundamentals of the Mhc, and defining the species differences makes the model organisms more useful.
-
-
-
Molecular Interactions Mediating T Cell Antigen Recognition
Vol. 21 (2003), pp. 659–684More Less▪ AbstractOver the past decade, key protein interactions contributing to T cell antigen recognition have been characterized in molecular detail. These have included interactions involving the T cell antigen receptor (TCR) itself, its coreceptors CD4 and CD8, the accessory molecule CD2, and the costimulatory receptors CD28 and CTLA-4. A clear view is emerging of how these molecules interact with their ligands at the cell-cell interface. Structural and binding studies have confirmed that the proteins span small but comparable distances and that, overall, they interact very weakly. However, there have been important surprises as well: that TCR interactions with peptide-MHC are topologically constrained and characterized by considerable conformational flexibility at the binding interface; that coreceptors engage peptide-MHC with extraordinarily fast kinetics and at angles apparently precluding direct interactions with the TCR bound to the same peptide-MHC; that the structural mechanisms allowing recognition by costimulatory and accessory molecules to be weak and yet specific are very heterogeneous; and that because of differences in both binding affinity and stoichiometry, there is enormous variation in the stability of the various costimulatory receptor/ligand complexes. These studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.
-
-
-
Tolerogenic Dendritic Cells*
Vol. 21 (2003), pp. 685–711More Less▪ AbstractDendritic cells (DCs) have several functions in innate and adaptive immunity. In addition, there is increasing evidence that DCs in situ induce antigen-specific unresponsiveness or tolerance in central lymphoid organs and in the periphery. In the thymus DCs generate tolerance by deleting self-reactive T cells. In peripheral lymphoid organs DCs also induce tolerance to antigens captured by receptors that mediate efficient uptake of proteins and dying cells. Uptake by these receptors leads to the constitutive presentation of antigens on major histocompatibility complex (MHC) class I and II products. In the steady state the targeting of DC antigen capture receptors with low doses of antigens leads to deletion of the corresponding T cells and unresponsiveness to antigenic rechallenge with strong adjuvants. In contrast, if a stimulus for DC maturation is coadministered with the antigen, the mice develop immunity, including interferon-γ-secreting effector T cells and memory T cells. There is also new evidence that DCs can contribute to the expansion and differentiation of T cells that regulate or suppress other immune T cells. One possibility is that distinct developmental stages and subsets of DCs and T cells can account for the different pathways to peripheral tolerance, such as deletion or suppression. We suggest that several clinical situations, including autoimmunity and certain infectious diseases, can be influenced by the antigen-specific tolerogenic role of DCs.
-
-
-
Molecular Mechanisms RegulatinG Th1 Immune Responses
Vol. 21 (2003), pp. 713–758More LessThe T helper lymphocyte is responsible for orchestrating the appropriate immune response to a wide variety of pathogens. The recognition of the polarized T helper cell subsets Th1 and Th2 has led to an understanding of the role of these cells in coordinating a variety of immune responses, both in responses to pathogens and in autoimmune and allergic disease. Here, we discuss the mechanisms that control lineage commitment to the Th1 phenotype. What has recently emerged is a rich understanding of the cytokines, receptors, signal transduction pathways, and transcription factors involved in Th1 differentiation. Although the picture is still incomplete, the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.
-
-
-
Biology of Hematopoietic Stem Cells and Progenitors: Implications for Clinical Application
Vol. 21 (2003), pp. 759–806More Less▪ AbstractStem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases.
-
-
-
Does the Immune System See Tumors as Foreign or Self?
Vol. 21 (2003), pp. 807–839More LessGiven the vast number of genetic and epigenetic changes associated with carcinogenesis, it is clear that tumors express many neoantigens. A central question in cancer immunology is whether recognition of tumor antigens by the immune system leads to activation (i.e., surveillance) or tolerance. Paradoxically, while strong evidence exists that specific immune surveillance systems operate at early stages of tumorigenesis, established tumors primarily induce immune tolerance. A unifying hypothesis posits that the fundamental processes of cancer progression, namely tissue invasion and metastasis, are inherently proinflammatory and thus activating for innate and adaptive antitumor immunity. To elude immune surveillance, tumors must develop mechanisms that block the elaboration and sensing of proinflammatory danger signals, thereby shifting the balance from activation to tolerance induction. Elucidation of these mechanisms provides new strategies for cancer immunotherapy.
-
-
-
B Cell Chronic Lymphocytic Leukemia: Lessons Learned from Studies of the B Cell Antigen Receptor
Vol. 21 (2003), pp. 841–894More LessB cell chronic lymphocytic leukemia (B-CLL) is an accumulative disease of slowly proliferating CD5+ B lymphocytes that develops in the aging population. Whereas some patients with B-CLL have an indolent course and die after many years from unrelated causes, others progress very rapidly and succumb within a few years from this currently incurable leukemia. Over the past decade studies of the structure and function of the B cell antigen receptor (BCR) used by these leukemic cells have helped redefine the nature of this disease. In this review we summarize and reinterpret several aspects of these BCR-related studies and how they might relate to the disease. In particular, we address the ability of antigens to select out and drive B cell clones from the normal state to overt leukemic cells by binding to BCRs that are relatively unique and characteristic of B-CLL cells. The differential capacity of some B-CLL cases to continue to transduce signals through the BCR during the leukemic phase and the consequences for the in vivo biology of the leukemic clone is also considered. Finally, we discuss current and emerging views of the cellular origin of B-CLL cells and the differentiation pathways down which we believe these cells progress.
-
Previous Volumes
-
Volume 42 (2024)
-
Volume 41 (2023)
-
Volume 40 (2022)
-
Volume 39 (2021)
-
Volume 38 (2020)
-
Volume 37 (2019)
-
Volume 36 (2018)
-
Volume 35 (2017)
-
Volume 34 (2016)
-
Volume 33 (2015)
-
Volume 32 (2014)
-
Volume 31 (2013)
-
Volume 30 (2012)
-
Volume 29 (2011)
-
Volume 28 (2010)
-
Volume 27 (2009)
-
Volume 26 (2008)
-
Volume 25 (2007)
-
Volume 24 (2006)
-
Volume 23 (2005)
-
Volume 22 (2004)
-
Volume 21 (2003)
-
Volume 20 (2002)
-
Volume 19 (2001)
-
Volume 18 (2000)
-
Volume 17 (1999)
-
Volume 16 (1998)
-
Volume 15 (1997)
-
Volume 14 (1996)
-
Volume 13 (1995)
-
Volume 12 (1994)
-
Volume 11 (1993)
-
Volume 10 (1992)
-
Volume 9 (1991)
-
Volume 8 (1990)
-
Volume 7 (1989)
-
Volume 6 (1988)
-
Volume 5 (1987)
-
Volume 4 (1986)
-
Volume 3 (1985)
-
Volume 2 (1984)
-
Volume 1 (1983)
-
Volume 0 (1932)