- Home
- A-Z Publications
- Annual Review of Neuroscience
- Previous Issues
- Volume 38, 2015
Annual Review of Neuroscience - Volume 38, 2015
Volume 38, 2015
-
-
Depression: A Decision-Theoretic Analysis
Vol. 38 (2015), pp. 1–23More LessThe manifold symptoms of depression are common and often transient features of healthy life that are likely to be adaptive in difficult circumstances. It is when these symptoms enter a seemingly self-propelling spiral that the maladaptive features of a disorder emerge. We examine this malignant transformation from the perspective of the computational neuroscience of decision making, investigating how dysfunction of the brain's mechanisms of evaluation might lie at its heart. We start by considering the behavioral implications of pessimistic evaluations of decision variables. We then provide a selective review of work suggesting how such pessimism might arise via specific failures of the mechanisms of evaluation or state estimation. Finally, we analyze ways that miscalibration between the subject and environment may be self-perpetuating. We employ the formal framework of Bayesian decision theory as a foundation for this study, showing how most of the problems arise from one of its broad algorithmic facets, namely model-based reasoning.
-
-
-
Neuronal and Vascular Interactions
Vol. 38 (2015), pp. 25–46More LessThe brain, which represents 2% of body mass but consumes 20% of body energy at rest, has a limited capacity to store energy and is therefore highly dependent on oxygen and glucose supply from the blood stream. Normal functioning of neural circuits thus relies on adequate matching between metabolic needs and blood supply. Moreover, not only does the brain need to be densely vascularized, it also requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for synaptic transmission and neuronal function. In this review, we focus on three major factors that ensure optimal brain perfusion and function: the patterning of vascular networks to efficiently deliver blood and nutrients, the function of the blood–brain barrier to maintain brain homeostasis, and the regulation of cerebral blood flow to adequately couple energy supply to neural function.
-
-
-
The Genetics of Neuropsychiatric Diseases: Looking In and Beyond the Exome
Vol. 38 (2015), pp. 47–68More LessNext-generation sequencing, which allows genome-wide detection of rare and de novo mutations, is transforming neuropsychiatric disease genetics through identifying on an unprecedented scale genes and protein-coding mutations that confer risk. Although understanding how regulatory variants influence risk remains a challenge, we are likely transitioning into a phase of neuropsychiatric disease genetics in which the rate-limiting step may no longer be gene discovery. Instead, the future will concentrate more on the biological and clinical translation of the torrent of specific risk mutations identified through next-generation sequencing. Here, we review the recent progress that resulted specifically from exome sequencing and emphasize the need for rigorous statistical evaluation of the expanding data sets, as well as expanded functional analysis of implicated proteins and mutations. Then, we introduce some of the expected opportunities and challenges investigators face when moving beyond the exome. Finally, we briefly highlight the challenge of deriving translational benefit from the progress in genetics.
-
-
-
Visual Guidance in Control of Grasping
Vol. 38 (2015), pp. 69–86More LessHumans and other primates possess a unique capacity to grasp and manipulate objects skillfully, a facility pervasive in everyday life that has undoubtedly contributed to the success of our species. When we reach and grasp an object, various cortical areas in the parietal and frontal lobes work together effortlessly to analyze object shape and position, transform this visual information into useful motor commands, and implement these motor representations to preshape the hand before contact with the object is made. In recent years, a growing number of studies have investigated the neural circuits underlying object grasping in both the visual and motor systems of the macaque monkey. The accumulated knowledge not only helps researchers understand how object grasping is implemented in the primate brain but may also contribute to the development of novel neural interfaces and neuroprosthetics.
-
-
-
Neurodegenerative Diseases: Expanding the Prion Concept
Vol. 38 (2015), pp. 87–103More LessThe prion paradigm has emerged as a unifying molecular principle for the pathogenesis of many age-related neurodegenerative diseases. This paradigm holds that a fundamental cause of specific disorders is the misfolding and seeded aggregation of certain proteins. The concept arose from the discovery that devastating brain diseases called spongiform encephalopathies are transmissible to new hosts by agents consisting solely of a misfolded protein, now known as the prion protein. Accordingly, “prion” was defined as a “proteinaceous infectious particle.” As the concept has expanded to include other diseases, many of which are not infectious by any conventional definition, the designation of prions as infectious agents has become problematic. We propose to define prions as “proteinaceous nucleating particles” to highlight the molecular action of the agents, lessen unwarranted apprehension about the transmissibility of noninfectious proteopathies, and promote the wider acceptance of this revolutionary paradigm by the biomedical community.
-
-
-
Neurological Aspects of Human Glycosylation Disorders
Vol. 38 (2015), pp. 105–125More LessThis review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
-
-
-
Glutamate Synapses in Human Cognitive Disorders
Vol. 38 (2015), pp. 127–149More LessAccumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.
-
-
-
An Integrative Model of the Maturation of Cognitive Control
Vol. 38 (2015), pp. 151–170More LessBrains systems undergo unique and specific dynamic changes at the cellular, circuit, and systems level that underlie the transition to adult-level cognitive control. We integrate literature from these different levels of analyses to propose a novel model of the brain basis of the development of cognitive control. The ability to consistently exert cognitive control improves into adulthood as the flexible integration of component processes, including inhibitory control, performance monitoring, and working memory, increases. Unique maturational changes in brain structure, supported by interactions between dopaminergic and GABAergic systems, contribute to enhanced network synchronization and an improved signal-to-noise ratio. In turn, these factors facilitate the specialization and strengthening of connectivity in networks supporting the transition to adult levels of cognitive control. This model provides a novel understanding of the adolescent period as an adaptive period of heightened experience-seeking necessary for the specialization of brain systems supporting cognitive control.
-
-
-
Long-Range Neural Synchrony in Behavior
Vol. 38 (2015), pp. 171–194More LessLong-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed.
-
-
-
Plasticity of Cortical Excitatory-Inhibitory Balance
Vol. 38 (2015), pp. 195–219More LessSynapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.
-
-
-
The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification
Vol. 38 (2015), pp. 221–246More LessIn the retina, photoreceptors pass visual information to interneurons, which process it and pass it to retinal ganglion cells (RGCs). Axons of RGCs then travel through the optic nerve, telling the rest of the brain all it will ever know about the visual world. Research over the past several decades has made clear that most RGCs are not merely light detectors, but rather feature detectors, which send a diverse set of parallel, highly processed images of the world on to higher centers. Here, we review progress in classification of RGCs by physiological, morphological, and molecular criteria, making a particular effort to distinguish those cell types that are definitive from those for which information is partial. We focus on the mouse, in which molecular and genetic methods are most advanced. We argue that there are around 30 RGC types and that we can now account for well over half of all RGCs. We also use RGCs to examine the general problem of neuronal classification, arguing that insights and methods from the retina can guide the classification enterprise in other brain regions.
-
-
-
Global Order and Local Disorder in Brain Maps
Vol. 38 (2015), pp. 247–268More LessMaps serve as a ubiquitous organizing principle in the mammalian brain. In several sensory systems, such as audition, vision, and somatosensation, topographic maps are evident throughout multiple levels of brain pathways. Topographic maps, like retinotopy and tonotopy, persist from the receptor surface up to the cortex. Other maps, such as those of orientation preference in the visual cortex, are first created in the cortex itself. Despite the prevalence of topographic maps, it is still not clear what function they subserve. Although maps are topographically smooth at the macroscale, they are often locally heterogeneous. Here, we review studies describing the anatomy and physiology of topographic maps across various spatial scales, from the smooth macroscale to the heterogeneous local microarchitecture, with emphasis on maps of the visual and auditory systems. We discuss the potential advantages of local heterogeneity in brain maps, how they reflect complex cortical connectivity, and how they may impact sensory coding and local computations.
-
-
-
General Cortical and Special Prefrontal Connections: Principles from Structure to Function
Vol. 38 (2015), pp. 269–289More LessHow is the vast brain communication system organized? A structural model relates connections to laminar differences between linked areas. The model is based on the principle of systematic structural variation in the cortex, extending from the simplest limbic cortices to eulaminate areas with elaborate lamination. The model accounts for laminar patterns and for the strength and topography of connections between nearby or distant cortices and subcortical structures, exemplified quantitatively for the principal and special prefrontal connections. Widespread connections of limbic areas and focal connections of eulaminate areas yield a broad range of circuit patterns for diverse functions. These diverse pathways innervate excitatory and functionally distinct inhibitory neurons, providing the basis for differential recruitment of areas for flexible behavior. Systematic structural variation likely emerges by timing differences in the development of distinct areas and has important implications for altered connections in diseases of developmental origin.
-
-
-
Cortical Folding: When, Where, How, and Why?
Vol. 38 (2015), pp. 291–307More LessWhy the cerebral cortex folds in some mammals but not in others has long fascinated and mystified neurobiologists. Over the past century—especially the past decade—researchers have used theory and experiment to support different folding mechanisms such as tissue buckling from mechanical stress, axon tethering, localized proliferation, and external constraints. In this review, we synthesize these mechanisms into a unifying framework and introduce a hitherto unappreciated mechanism, the radial intercalation of new neurons at the top of the cortical plate, as a likely proximate force for tangential expansion that then leads to cortical folding. The interplay between radial intercalation and various biasing factors, such as local variations in proliferation rate and connectivity, can explain the formation of both random and stereotypically positioned folds.
-
-
-
How Inhibitory Circuits in the Thalamus Serve Vision
Vol. 38 (2015), pp. 309–329More LessInhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.
-
-
-
Chemosensory Receptor Specificity and Regulation
Vol. 38 (2015), pp. 331–349More LessThe senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors.
-
-
-
Levels of Homology and the Problem of Neocortex
Vol. 38 (2015), pp. 351–368More LessThe neocortex is found only in mammals, and the fossil record is silent on how this soft tissue evolved. Understanding neocortex evolution thus devolves to a search for candidate homologous neocortex traits in the extant nonmammalian amniotes. The difficulty is that homology is based on similarity, and the six-layered neocortex structure could hardly be more dissimilar in appearance from the nuclear organization that is so conspicuous in the dorsal telencephalon of birds and other reptiles. Recent molecular data have, however, provided new support for one prominent hypothesis, based on neuronal circuits, that proposes the principal neocortical input and output cell types are a conserved feature of amniote dorsal telencephalon. Many puzzles remain, the greatest being understanding the selective pressures and molecular mechanisms that underlie such tremendous morphological variation in telencephalon structure.
-
-
-
New Opportunities in Vasopressin and Oxytocin Research: A Perspective from the Amygdala
Vol. 38 (2015), pp. 369–388More LessIn the present review, we discuss how the evolution of oxytocin and vasopressin from a single ancestor peptide after gene duplication has stimulated the development of the vertebrate social brain. Separate production sites became possible with a hypothalamic development, which, interestingly, is triggered by the same transcription factors that underlie the development of various subcortical regions where vasopressin and oxytocin receptors are adjacently expressed and which are connected by inhibitory circuits. The opposite modulation of their output by vasopressin and oxytocin could thus create a dynamic equilibrium for rapid responsiveness to external stimuli. At the level of the individual, nurturing early in life can long-lastingly program oxytocin signaling, maintaining a capability of learning and sensitivity to external stimuli that contributes to development of social behavior in adulthood. Oxytocin and vasopressin are thus important for the development of a vertebrate brain that supports bonding between individuals and building of an interactive community.
-
-
-
In Search of a Human Self-Regulation System
Vol. 38 (2015), pp. 389–411More LessThe capacity for self-regulation allows people to control their thoughts, behaviors, emotions, and desires. In spite of this impressive ability, failures of self-regulation are common and contribute to numerous societal problems, from obesity to drug addiction. Such failures frequently occur following exposure to highly tempting cues, during negative moods, or after self-regulatory resources have been depleted. Here we review the available neuroscientific evidence regarding self-regulation and its failures. At its core, self-regulation involves a critical balance between the strength of an impulse and an individual's ability to inhibit the desired behavior. Although neuroimaging and patient studies provide consistent evidence regarding the reward aspects of impulses and desires, the neural mechanisms that underlie the capacity for control have eluded consensus, with various executive control regions implicated in different studies. We outline the necessary properties for a self-regulation control system and suggest that the use of resting-state functional connectivity analyses may be useful for understanding how people regulate their behavior and why they sometimes fail in their attempts.
-
-
-
Cell Types, Circuits, and Receptive Fields in the Mouse Visual Cortex
Vol. 38 (2015), pp. 413–431More LessOver the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.
-
Previous Volumes
-
Volume 47 (2024)
-
Volume 46 (2023)
-
Volume 45 (2022)
-
Volume 44 (2021)
-
Volume 43 (2020)
-
Volume 42 (2019)
-
Volume 41 (2018)
-
Volume 40 (2017)
-
Volume 39 (2016)
-
Volume 38 (2015)
-
Volume 37 (2014)
-
Volume 36 (2013)
-
Volume 35 (2012)
-
Volume 34 (2011)
-
Volume 33 (2010)
-
Volume 32 (2009)
-
Volume 31 (2008)
-
Volume 30 (2007)
-
Volume 29 (2006)
-
Volume 28 (2005)
-
Volume 27 (2004)
-
Volume 26 (2003)
-
Volume 25 (2002)
-
Volume 24 (2001)
-
Volume 23 (2000)
-
Volume 22 (1999)
-
Volume 21 (1998)
-
Volume 20 (1997)
-
Volume 19 (1996)
-
Volume 18 (1995)
-
Volume 17 (1994)
-
Volume 16 (1993)
-
Volume 15 (1992)
-
Volume 14 (1991)
-
Volume 13 (1990)
-
Volume 12 (1989)
-
Volume 11 (1988)
-
Volume 10 (1987)
-
Volume 9 (1986)
-
Volume 8 (1985)
-
Volume 7 (1984)
-
Volume 6 (1983)
-
Volume 5 (1982)
-
Volume 4 (1981)
-
Volume 3 (1980)
-
Volume 2 (1979)
-
Volume 1 (1978)
-
Volume 0 (1932)